Graphs are among the most important abstract data types in computer science, and the algorithms that operate on them are critical to modern life. Graphs have been shown to be powerful tools for modeling complex problems because of their simplicity and generality. Graph algorithms are one of the pillars of mathematics, informing research in such diverse areas as combinatorial optimization, complexity theory, and topology. Algorithms on graphs are applied in many ways in today s world - from Web rankings to metabolic networks, from finite element meshes to semantic graphs.

The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.

*Graph Algorithms in the Language of Linear Algebra* is the first book to cover graph algorithms accessible to engineers and scientists not trained in computer science but having a strong linear algebra background, enabling them to quickly understand and apply graph algorithms. It also covers array-based graph algorithms, showing readers how to express canonical graph algorithms using a highly elegant and efficient array notation and how to tap into the large range of tools and techniques that have been built for matrices and tensors; parallel array-based algorithms, demonstrating with examples how to easily implement parallel graph algorithms using array-based approaches, which enables readers to address much larger graph problems; and array-based theory for analyzing graphs, providing a template for using array-based constructs to develop new theoretical approaches for graph analysis.

**Audience:** This book is suitable as the primary text for a class on linear algebraic graph algorithms and as either the primary or supplemental text for a class on graph algorithms for engineers and scientists without training in computer science.

**Contents:** List of Figures; List of Tables; List of Algorithms; Preface; Acknowledgments; Part I: Algorithms: Chapter 1: Graphs and Matrices; Chapter 2: Linear Algebraic Notation and Definitions; Chapter 3: Connected Components and Minimum Paths; Chapter 4: Some Graph Algorithms in an Array-Based Language; Chapter 5: Fundamental Graph Algorithms; Chapter 6: Complex Graph Algorithms; Chapter 7: Multilinear Algebra for Analyzing Data with Multiple Linkages; Chapter 8: Subgraph Detection; Part II: Data: Chapter 9: Kronecker Graphs; Chapter 10: The Kronecker Theory of Power Law Graphs; Chapter 11: Visualizing Large Kronecker Graphs; Part III: Computation: Chapter 12: Large-Scale Network Analysis; Chapter 13: Implementing Sparse Matrices for Graph Algorithms; Chapter 14: New Ideas in Sparse Matrix-Matrix Multiplication; Chapter 15: Parallel Mapping of Sparse Computations; Chapter 16: Fundamental Questions in the Analysis of Large Graphs; Index.

*"synopsis" may belong to another edition of this title.*

The field of graph algorithms has become one of the pillars of theoretical computer science. This is an introduction to graph algorithms accessible to anyone with a strong linear algebra background - it allows non-computer science trained engineers and scientists to quickly understand and apply graph algorithms.

**Jeremy Kepner** is a senior technical staff member at MIT Lincoln Laboratory. His research, on which he has published many articles (and the SIAM book *Parallel Matlab for Multicore and Multinode Computers*), focuses on the development of advanced libraries for the application of massively parallel computing to a variety of data intensive signal processing problems. Kepner is most proud of being the principal architect, principal investigator, or otherwise co-leader of several very talented teams that have produced a number of innovative technologies that have broken new ground in parallel computing. **John Gilbert** is a SIAM Fellow and Professor of Computer Science at the University of California at Santa Barbara. His research interests are combinatorial scientific computing, high-performance graph algorithms, sparse matrix methods, tools and software for computational science and engineering, and numerical linear algebra.

*"About this title" may belong to another edition of this title.*

Published by
Society for Industrial & Appli
(2011)

ISBN 10: 0898719909
ISBN 13: 9780898719901

New
Hardcover
Quantity Available: 2

Seller:

Rating

**Book Description **Society for Industrial & Appli, 2011. Hardcover. Book Condition: New. Never used!. Bookseller Inventory # P110898719909

More Information About This Seller | Ask Bookseller a Question

Published by
Society for Industrial & Applied Mathematics
(2011)

ISBN 10: 0898719909
ISBN 13: 9780898719901

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Society for Industrial & Applied Mathematics, 2011. Hardcover. Book Condition: New. book. Bookseller Inventory # M0898719909

More Information About This Seller | Ask Bookseller a Question

Published by
Society for Industrial & Applied
(2011)

ISBN 10: 0898719909
ISBN 13: 9780898719901

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Society for Industrial & Applied, 2011. Hardcover. Book Condition: Brand New. 361 pages. 10.50x7.25x1.00 inches. In Stock. Bookseller Inventory # 0898719909

More Information About This Seller | Ask Bookseller a Question