An unfortunate outcome of the growth of the Internet and mobile technologies has been the challenge of countering cybercrime. This book introduces and explains the latest trends and techniques of edge artificial intelligence (EdgeAI) intended to help cyber security experts design robust cyber defense systems (CDS), including host-based and network-based intrusion detection system and digital forensic intelligence. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data, in addition to other basic information related to network security. In addition, it provides a brief overview of modern cyber security threats and outlines the advantages of using EdgeAI to counter these threats, as well as exploring various cyber defense mechanisms (CDM) based on detection type and approaches. Specific challenging areas pertaining to cyber defense through EdgeAI, such as improving digital forensic intelligence, proactive and adaptive defense of network infrastructure, and bio-inspired CDM, are also discussed. This book is intended as a reference for academics and students in the field of network and cybersecurity, particularly on the topics of intrusion detection systems, smart grid, EdgeAI, and bio-inspired cyber defense principles. The front-line EdgeAI techniques discussed will also be of use to cybersecurity engineers in their work enhancing cyber defense systems.
"synopsis" may belong to another edition of this title.
Ranjit Panigrahi is an Assistant Professor at the Department of Computer Applications, Sikkim Manipal University. He has been actively involved in numerous conferences and serves as a member of the technical review committee for international journals published by Springer Nature and Inderscience. His research interests are Machine Learning, Pattern Recognition and Wireless Sensor Networks.
Victor Hugo C. de Albuquerque is a professor and senior researcher at the University of Fortaleza, LAPISCO/IFCE, and ARMTEC Tecnologia em Robótica, Brazil. He specialises in the Internet of Things, Machine/Deep Learning, Pattern Recognition and Robotics. His work has been funded by the Brazilian National Council for Research and Development.
Akash Kumar Bhoi is an Assistant Professor (Research) at the Department of Electrical and Electronics Engineering at Sikkim Manipal Institute of Technology (SMIT). He is a member of IEEE, ISEIS, and IAENG, an associate member of IEI, UACEE, and editorial board member reviewer of Indian and international journals. His research interests are Biomedical Signal Processing, Internet of Things, Computational Intelligence, Antenna and Renewable Energy.
Hareesha K. S. is a Professor at the Department of Computer Applications at Manipal Institute of Technology, MAHE. He has received fellowship awards from the National Science Foundation, USA and Federation University, Australia and was recently selected for AICTE-UKIERI Technical Leadership Development Programme for his research and academic contributions. His research interests are improving machine learning algorithms and understanding, design of intelligent soft computing models in digital image processing and data mining. He is also works on Virtual Reality and Augmented Reality for medical surgery planning.
Dr. P Naga Srinivasu is an Associate Professor in the Department of Computer Science at Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, India. Holding a post-doctoral fellowship from the Department of Teleinformatics Engineering at the Federal University of Ceará, Brazil, he also serves as a research fellow at INTI International University, Malaysia. After graduating with a Bachelor's degree in Computer Science Engineering from SSIET, JNTU Kakinada, in 2011, he obtained a Master's in Computer Science Technology from GITAM University, Visakhapatnam, in 2013. His doctoral research at GITAM University focused on Automatic Segmentation Methods for Volumetric Estimation of Damaged Areas in Astrocytoma instances Identified from 2D Brain MR Imaging. His diverse contributions reflect a steadfast dedication to advancing research and knowledge in healthcare informatics and biomedical engineering.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-390139
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 47337674
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 47337674-n
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 397544687
Quantity: 3 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. An unfortunate outcome of the growth of the Internet and mobile technologies has been the challenge of countering cybercrime. This book introduces and explains the latest trends and techniques of edge artificial intelligence (EdgeAI) intended to help cyber security experts design robust cyber defense systems (CDS), including host-based and network-based intrusion detection system and digital forensic intelligence. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data, in addition to other basic information related to network security. In addition, it provides a brief overview of modern cyber security threats and outlines the advantages of using EdgeAI to counter these threats, as well as exploring various cyber defense mechanisms (CDM) based on detection type and approaches. Specific challenging areas pertaining to cyber defense through EdgeAI, such as improving digital forensic intelligence, proactive and adaptive defense of network infrastructure, and bio-inspired CDM, are also discussed. This book is intended as a reference for academics and students in the field of network and cybersecurity, particularly on the topics of intrusion detection systems, smart grid, EdgeAI, and bio-inspired cyber defense principles. The front-line EdgeAI techniques discussed will also be of use to cybersecurity engineers in their work enhancing cyber defense systems. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9781032104072
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. New copy - Usually dispatched within 4 working days. 453. Seller Inventory # B9781032104072
Quantity: 1 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. An unfortunate outcome of the growth of the Internet and mobile technologies has been the challenge of countering cybercrime. This book introduces and explains the latest trends and techniques of edge artificial intelligence (EdgeAI) intended to help cyber security experts design robust cyber defense systems (CDS), including host-based and network-based intrusion detection system and digital forensic intelligence. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data, in addition to other basic information related to network security. In addition, it provides a brief overview of modern cyber security threats and outlines the advantages of using EdgeAI to counter these threats, as well as exploring various cyber defense mechanisms (CDM) based on detection type and approaches. Specific challenging areas pertaining to cyber defense through EdgeAI, such as improving digital forensic intelligence, proactive and adaptive defense of network infrastructure, and bio-inspired CDM, are also discussed. This book is intended as a reference for academics and students in the field of network and cybersecurity, particularly on the topics of intrusion detection systems, smart grid, EdgeAI, and bio-inspired cyber defense principles. The front-line EdgeAI techniques discussed will also be of use to cybersecurity engineers in their work enhancing cyber defense systems. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781032104072
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 47337674-n
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26398832432
Quantity: 4 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781032104072
Quantity: Over 20 available