Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data.
Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data.
Key Features:
- Includes many code examples in R and SQL, with R/SQL scripts freely provided online.
- Extensive use of real datasets from empirical economic research and business analytics, with data files freely provided online.
- Leads students and practitioners to think critically about where the bottlenecks are in practical data analysis tasks with large data sets, and how to address them.
The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences.
"synopsis" may belong to another edition of this title.
Ulrich Matter is an Assistant Professor of Economics at the University of St.Gallen. His primary research interests lie at the intersection of data science, political economics, and media economics. His teaching activities cover topics in data science, applied econometrics, and data analytics. Before joining the University of St. Gallen, he was a Visiting Researcher at the Berkman Klein Center for Internet & Society at Harvard University and a postdoctoral researcher and lecturer at the Faculty for Business and Economics, University of Basel.
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: Better World Books, Mishawaka, IN, U.S.A.
Condition: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Seller Inventory # 49439588-6
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 45894849-n
Quantity: Over 20 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-399452
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 45894849
Quantity: Over 20 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Big Data Analytics: A Guide to Data Science Practitioners Making the Transition to Big Data 1.26. Book. Seller Inventory # BBS-9781032458144
Quantity: 5 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Paperback. Condition: new. Paperback. Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data. Key Features: - Includes many code examples in R and SQL, with R/SQL scripts freely provided online. - Extensive use of real datasets from empirical economic research and business analytics, with data files freely provided online. - Leads students and practitioners to think critically about where the bottlenecks are in practical data analysis tasks with large data sets, and how to address them. The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences. Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781032458144
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 397643938
Quantity: 3 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781032458144
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26398733181
Quantity: 3 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 45894849-n
Quantity: 1 available