Statistical Inference via Data Science: A ModernDive into R and the Tidyverse, Second Edition offers a comprehensive guide to learning statistical inference with data science tools widely used in industry, academia, and government. The first part of this book introduces the tidyverse suite of R packages, including ggplot2 for data visualization and dplyr for data wrangling. The second part introduces data modeling via simple and multiple linear regression. The third part presents statistical inference using simulation-based methods within a general framework implemented in R via the infer package, a suitable complement to the tidyverse. By working with these methods, readers can implement effective exploratory data analyses, conduct statistical modeling with data, and carry out statistical inference via confidence intervals and hypothesis testing. All of these tasks are performed by strongly emphasizing data visualization.
Key Features in the Second Edition:
The first edition of the book has been used in so many different ways--for courses in statistical inference, statistical programming, business analytics, and data science for social policy, and by professionals in many other means. Ideal for those new to statistics or looking to deepen their knowledge, this edition provides a clear entry point into data science and modern statistical methods.
"synopsis" may belong to another edition of this title.
Chester Ismay is Vice President of Data and Automation at MATE Seminars and is a freelance data science consultant and instructor. He also teaches in the Center for Executive and Professional Education at Portland State University. He completed his PhD in statistics from Arizona State University in 2013. He has previously worked in various roles, including as an actuary at Scottsdale Insurance Company (now Nationwide E&S/Specialty) and at Ripon College, Reed College, and Pacific University. He has experience working in online education and was previously a Data Science Evangelist at DataRobot, where he led data science, machine learning, and data engineering in-person and virtual workshops for DataRobot University. In addition to his work for *ModernDive*, he contributed as the initial developer of the `infer` R package and is the author and maintainer of the `thesisdown` R package.
Albert Y. Kim is an Associate Professor of Statistical & Data Sciences at Smith College in Northampton, MA, USA. He completed his PhD in statistics at the University of Washington in 2011. Previously he worked in the Search Ads Metrics Team at Google Inc.\ as well as at Reed, Middlebury, and Amherst Colleges. In addition to his work for *ModernDive*, he is a co-author of the `resampledata` and `SpatialEpi` R packages. Both Dr. Kim and Dr. Ismay, along with Jennifer Chunn, are co-authors of the `fivethirtyeight` package of code and datasets published by the data journalism website FiveThirtyEight.com.
Arturo Valdivia is a Senior Lecturer in the Department of Statistics at Indiana University, Bloomington. He earned his PhD in Statistics from Arizona State University in 2013. His research interests focus on statistical education, exploring innovative approaches to help students grasp complex ideas with clarity. Over his career, he has taught a wide range of statistics courses, from introductory to advanced levels, to more than 1,800 undergraduate students and over 900 graduate students pursuing master's and Ph.D. programs in statistics, data science, and other disciplines. In recognition of his teaching excellence, he received Indiana University’s Trustees Teaching Award in 2023.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 48398804-n
Quantity: 10 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781032724515
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 48398804
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781032724515_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 48398804-n
Quantity: 10 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18403867469
Quantity: 3 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 48398804
Quantity: 10 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2nd edition. 480 pages. 10.00x7.00x10.00 inches. In Stock. Seller Inventory # x-103272451X
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Offers a comprehensive guide to learning statistical inference with data science tools widely used in industry, academia, and government. Ideal for those new to statistics or looking to deepen their knowledge, this edition provides a clear entry point into data science and modern statistical methods. Seller Inventory # 9781032724515
Quantity: 1 available