Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
"synopsis" may belong to another edition of this title.
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Modern Dimension Reduction 0.31. Book. Seller Inventory # BBS-9781108986892
Quantity: 5 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2317530289423
Quantity: Over 20 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Paperback. Condition: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781108986892
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 75 pages. 9.02x5.98x0.20 inches. In Stock. This item is printed on demand. Seller Inventory # __1108986897
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 160. Seller Inventory # C9781108986892
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781108986892_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9781108986892
Quantity: 10 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Seller Inventory # 9781108986892
Quantity: 1 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condition: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9781108986892
Quantity: 1 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781108986892
Quantity: 1 available