Using the load-pull method for RF and microwave power amplifier design
This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design.
The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples.
Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book:
"synopsis" may belong to another edition of this title.
DR. JOHN F. SEVIC has held design positions at Motorola, Qualcomm, Tropian, Cree, Maury Microwave, and Focus Microwave, and is currently at Maja Systems, where he is engaged in millimeter-wave antenna design. John is inventor of one of the most widely used methods of battery-life improvement for mobile phones, stochastic efficiency optimization, found in virtually all mobile phone platforms. He has served on the IEEE Microwave Theory and Techniques Editorial Review Board, IEEE IMS TPC, and IEEE ARFTG TPC. John is lead inventor of ten US patents, with several pending, and has a Ph.D., MS, and BS, all in electrical engineering.
Using the load-pull method for RF and microwave power amplifier design
This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design.
The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples.
Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book:
Using the load-pull method for RF and microwave power amplifier design
This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design.
The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples.
Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book:
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 21449321-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2317530296392
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781118898178
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 21449321
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Using the load-pull method for RF and microwave power amplifier design This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design. The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples. Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book: Helps engineers develop systematic, accurate, and repeatable approach to RF PA designProvides in-depth coverage of using the load-pull method for first-pass design successOffers 150 illustrations and six case studies for greater comprehension of topics Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781118898178
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 21449321-n
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 300. Seller Inventory # 311947399
Quantity: 3 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. New copy - Usually dispatched within 4 working days. Seller Inventory # B9781118898178
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 21449321
Quantity: Over 20 available
Seller: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germany
Buch. Condition: Neu. Neuware -Using the load-pull method for RF and microwave power amplifier designThis new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design.The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples.Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book:\* Helps engineers develop systematic, accurate, and repeatable approach to RF PA design\* Provides in-depth coverage of using the load-pull method for first-pass design success\* Offers 150 illustrations and six case studies for greater comprehension of topics 192 pp. Englisch. Seller Inventory # 9781118898178
Quantity: 1 available