Introduces professionals and scientists to statistics and machine learning using the programming language R
Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science.
The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices.
The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models.
"synopsis" may belong to another edition of this title.
PHILIPPE J.S. DE BROUWER, PHD, is director at HSBC, guest professor at four universities and MBA programs (University of Warsaw, Jagiellonian University, Krakow School of Business and AGH University of Science and Technology) and honorary consul for Belgium in Krakow. As a professor, he builds bridges not only between universities and the industry, but also across disciplines. He teaches mathematicians leadership skills and non-mathematicians coding. As a scientist, he tries to combine research on financial markets, psychology, and investments to the benefit of the investor. As an honorary consul he is passionate about serving the community and helping initiatives grow.
Introduces professionals and scientists to statistics, machine learning, and big data using the programming language R
Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science.
The Big R-Book: From Data Science to Learning Machines and Big Data includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling and exploring data. In Part 5 we learn to build models, Part 6 introduces the reader to the reality in companies, Part 7 covers reports and interactive applications and Part 8 introduces the reader to big data and performance computing. The appendices focus on specialist topics such as building your own extention for R, answer questions that appear througout the book, etc.
The Big R-Book is an excellent guide for science technology, engineering, or mathematics students and graduates who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models or review them.
Introduces professionals and scientists to statistics, machine learning, and big data using the programming language R
Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science.
The Big R-Book: From Data Science to Learning Machines and Big Data includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling and exploring data. In Part 5 we learn to build models, Part 6 introduces the reader to the reality in companies, Part 7 covers reports and interactive applications and Part 8 introduces the reader to big data and performance computing. The appendices focus on specialist topics such as building your own extention for R, answer questions that appear througout the book, etc.
The Big R-Book is an excellent guide for science technology, engineering, or mathematics students and graduates who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models or review them.
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00045783087
Quantity: 1 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business usersContains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reportingUses a practical tone and integrates multiple topics in a coherent frameworkDemystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in RShows readers how to visualize results in static and interactive reportsSupplementary materials includes PDF slides based on the books content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781119632726
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9781119632726
Quantity: 3 available
Seller: Ubiquity Trade, Miami, FL, U.S.A.
Condition: New. Brand new! Please provide a physical shipping address. Seller Inventory # 9781119632726
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 369833861
Quantity: 3 available
Seller: Chiron Media, Wallingford, United Kingdom
Hardcover. Condition: New. Seller Inventory # 6666-WLY-9781119632726
Quantity: 3 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781119632726_new
Quantity: 3 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business usersContains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reportingUses a practical tone and integrates multiple topics in a coherent frameworkDemystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in RShows readers how to visualize results in static and interactive reportsSupplementary materials includes PDF slides based on the books content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781119632726
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26377260122
Quantity: 3 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business usersContains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reportingUses a practical tone and integrates multiple topics in a coherent frameworkDemystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in RShows readers how to visualize results in static and interactive reportsSupplementary materials includes PDF slides based on the books content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9781119632726
Quantity: 1 available