The Principles of Deep Learning Theory: An Effective Theory Approach to Understanding Neural Networks - Hardcover

Roberts, Daniel A.; Yaida, Sho

  • 4.50 out of 5 stars
    12 ratings by Goodreads
 
9781316519332: The Principles of Deep Learning Theory: An Effective Theory Approach to Understanding Neural Networks

Synopsis

This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus. informal probability theory. it can easily fill a semester long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.

"synopsis" may belong to another edition of this title.

About the Authors

Daniel A. Roberts was cofounder and CTO of Diffeo, an AI company acquired by Salesforce; a research scientist at Facebook AI Research; and a member of the School of Natural Sciences at the Institute for Advanced Study in Princeton, NJ. He was a Hertz Fellow, earning a PhD from MIT in theoretical physics, and was also a Marshall Scholar at Cambridge and Oxford Universities.

Sho Yaida is a research scientist at Meta AI. Prior to joining Meta AI, he obtained his PhD in physics at Stanford University and held postdoctoral positions at MIT and at Duke University. At Meta AI, he uses tools from theoretical physics to understand neural networks, the topic of this book.

Boris Hanin is an Assistant Professor at Princeton University in the Operations Research and Financial Engineering Department. Prior to joining Princeton in 2020, Boris was an Assistant Professor at Texas A&M in the Math Department and an NSF postdoc at MIT. He has taught graduate courses on the theory and practice of deep learning at both Texas A&M and Princeton.

"About this title" may belong to another edition of this title.