A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.
"synopsis" may belong to another edition of this title.
Stephen Marsland is a professor of scientific computing and the postgraduate director of the School of Engineering and Advanced Technology (SEAT) at Massey University. His research interests in mathematical computing include shape spaces, Euler equations, machine learning, and algorithms. He received a PhD from Manchester University
"About this title" may belong to another edition of this title.
Seller: BooksRun, Philadelphia, PA, U.S.A.
Hardcover. Condition: Good. 2. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Seller Inventory # 1466583282-11-1
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_429928417
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Acceptable. Connecting readers with great books since 1972. Used textbooks may not include companion materials such as access codes, etc. May have condition issues including wear and notes/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_432414711
Seller: Books From California, Simi Valley, CA, U.S.A.
Hardcover. Condition: Very Good. Cover and edges may have some wear. Seller Inventory # mon0003757793
Seller: Jenson Books Inc, Logan, UT, U.S.A.
hardcover. Condition: Very Good. A clean, cared for item that is unmarked and shows limited shelf wear. Seller Inventory # 4BQGBJ0154PZ
Seller: Textbooks_Source, Columbia, MO, U.S.A.
hardcover. Condition: Good. 2nd Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Seller Inventory # 001462409U
Seller: Twice Sold Tales, Capitol Hill, Seattle, WA, U.S.A.
Hardcover, 437 pages. Condition: Very good. Light rubbing to extremities of glossy pictorial boards. Head of spine slightly bumped. Pages appear free of writing / highlighting. In nice shape. Seller Inventory # 8089
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Seller Inventory # 21005627-5
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 21005627-n
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. A Proven, Hands-On Approach for Students without a Strong Statistical FoundationSince the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.New to the Second EditionTwo new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of contentRevision of the support vector machine material, including a simple implementation for experimentsNew material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptronAdditional discussions of the Kalman and particle filtersImproved code, including better use of naming conventions in PythonSuitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the authors website. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781466583283