An operator $C$ on a Hilbert space $mathcal H$ dilates to an operator $T$ on a Hilbert space $mathcal K$ if there is an isometry $V:mathcal Hto mathcal K$ such that $C= V* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $vartheta (d)$, expressed as a ratio of $Gamma $ functions for $d$ even, of all $dtimes d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
"synopsis" may belong to another edition of this title.
Seller: Leopolis, Kraków, Poland
Soft cover. Condition: New. 8vo (25 cm), VI, 106 pp. Laminated wrappers. Seller Inventory # 008518
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. v, 106 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04150 9781470434557 Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2490380