In this paper, the authors study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. They first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. They propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. They also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejer Interpolation Problem for matrix rational functions. The authors then extend the $Hinfty$-functional calculus to an $overlineHinfty+Hinfty$-functional calculus for the compressions of the shift. Next, the authors consider the subnormality of Toeplitz operators with matrix-valued bounded type symbols and, in particular, the matrix-valued version of Halmos's Problem 5 and then establish a matrix-valued version of Abrahamse's Theorem. They also solve a subnormal Toeplitz completion problem of $2times 2$ partial block Toeplitz matrices. Further, they establish a characterization of hyponormal Toeplitz pairs with matrix-valued bounded type symbols and then derive rank formulae for the self-commutators of hyponormal Toeplitz pairs.
"synopsis" may belong to another edition of this title.
US$ 18.61 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03316 9781470436247 Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2489222
Quantity: 1 available