Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework.
It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region.
Features:
This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.
"synopsis" may belong to another edition of this title.
Brigitte Le Roux is associate researcher at Laboratoire de Mathématiques Appliquées (MAP5/CNRS) of the Paris Descartes university and at the political research center of Sciences-Po Paris (CEVIPOF/CNRS). She completed her doctoral dissertation in applied mathematics at the Faculté des Sciences de Paris in 1970 that was supervised by Jean-Paul Benzécri. She has contributed to numerous theoretical research works and full scale empirical studies involving Geometric Data Analysis. She has authored and co-authored nine books, especially on Geometric Data Analysis (2004, Kluwer Academic Publishers) and Multiple Correspondence Analysis (2010, QASS series of Sage publications, n° 163).
Solène Bienaise is data scientist at Coheris (company). She completed her doctoral dissertation in applied mathematics in 2013 at the Paris Dauphine University, under the direction of Pierre Cazes and Brigitte Le Roux.
Jean-Luc Durand is associate professor at the Psychology department and researcher at LEEC (Laboratoire d’Ethologie Expérimentale et Comparée) of Paris 13 University. He completed his doctoral dissertation in Psychology at Paris Descartes University in 1989, supervised by Henry Rouanet. He teaches statistical methodology in psychology and ethology.
"About this title" may belong to another edition of this title.
US$ 3.75 shipping within U.S.A.
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-184501
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
unknown_binding. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_389211279
Quantity: 1 available
Seller: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress. Seller Inventory # SHUB184501
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26376309049
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 370784998
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18376309043
Quantity: 4 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 33954937-n
Quantity: 2 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781498781619
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030242695
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region.Features: Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points Presents combinatorial tests and related computations with R and Coheris SPAD software Includes four original case studies to illustrate application of the tests Includes necessary mathematical background to ensure it is selfcontainedThis book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781498781619
Quantity: 1 available