Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types.
Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
"synopsis" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLING22Oct2817100110483
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781522590965
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781522590965
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781522590965_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. KlappentextrnrnLink prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as re. Seller Inventory # 448011631
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers. Seller Inventory # 9781522590965
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 281 pages. 10.00x7.00x0.83 inches. In Stock. Seller Inventory # x-152259096X
Quantity: 2 available