Journey through the theory and practice of modern deep learning, and apply innovative techniques to solve everyday data problems.
In Inside Deep Learning, you will learn how to:
Implement deep learning with PyTorch
Select the right deep learning components
Train and evaluate a deep learning model
Fine tune deep learning models to maximize performance
Understand deep learning terminology
Adapt existing PyTorch code to solve new problems
Inside Deep Learning is an accessible guide to implementing deep learning with the PyTorch framework. It demystifies complex deep learning concepts and teaches you to understand the vocabulary of deep learning so you can keep pace in a rapidly evolving field. No detail is skipped—you’ll dive into math, theory, and practical applications. Everything is clearly explained in plain English.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Deep learning doesn’t have to be a black box! Knowing how your models and algorithms actually work gives you greater control over your results. And you don’t have to be a mathematics expert or a senior data scientist to grasp what’s going on inside a deep learning system. This book gives you the practical insight you need to understand and explain your work with confidence.
About the book
Inside Deep Learning illuminates the inner workings of deep learning algorithms in a way that even machine learning novices can understand. You’ll explore deep learning concepts and tools through plain language explanations, annotated code, and dozens of instantly useful PyTorch examples. Each type of neural network is clearly presented without complex math, and every solution in this book can run using readily available GPU hardware!
What's inside
Select the right deep learning components
Train and evaluate a deep learning model
Fine tune deep learning models to maximize performance
Understand deep learning terminology
About the reader
For Python programmers with basic machine learning skills.
About the author
Edward Raff is a Chief Scientist at Booz Allen Hamilton, and the author of the JSAT machine learning library.
Table of Contents
PART 1 FOUNDATIONAL METHODS
1 The mechanics of learning
2 Fully connected networks
3 Convolutional neural networks
4 Recurrent neural networks
5 Modern training techniques
6 Common design building blocks
PART 2 BUILDING ADVANCED NETWORKS
7 Autoencoding and self-supervision
8 Object detection
9 Generative adversarial networks
10 Attention mechanisms
11 Sequence-to-sequence
12 Network design alternatives to RNNs
13 Transfer learning
14 Advanced building blocks
"synopsis" may belong to another edition of this title.
Edward Raff is a Chief Scientist at Booz Allen Hamilton, and the author of the JSAT machine learning library. His research includes deep learning, malware detection, reproducibility in ML, fairness/bias, and high performance computing. He is also a visiting professor at the University of Maryland, Baltimore County and teaches deep learning in the Data Science department. Dr Raff has over 40 peer reviewed publications, three best paper awards, and has presented at numerous major conferences.
Journey through the theory and practice of modern deep learning, and apply innovative techniques to solve everyday data problems. Inside Deep Learning is a fast-paced beginner's guide to solving common technical problems with deep learning.
Written for everyday developers, there are no complex mathematical proofs or unnecessary academic theory in Inside Deep Learning. You'll learn how deep learning works through plain language, annotated code, and equations as you work through dozens of instantly useful PyTorch examples. As you go, you'll build a French-English translator that works on the same principles as professional machine translation, and discover cutting-edge techniques just emerging from the latest research. Best of all, every deep learning solution in this book can run in less than fifteen minutes using free GPU hardware!"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 43037542-n
Quantity: Over 20 available
Seller: Follow Books, SOUTHFIELD, MI, U.S.A.
Condition: New. New Book. Seller Inventory # 1617298638-TUX
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 43037542
Quantity: Over 20 available
Seller: INDOO, Avenel, NJ, U.S.A.
Condition: As New. Unread copy in mint condition. Seller Inventory # SS9781617298639
Quantity: Over 20 available
Seller: INDOO, Avenel, NJ, U.S.A.
Condition: New. Brand New. Seller Inventory # 9781617298639
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # PB-9781617298639
Quantity: 15 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-16383
Quantity: 1 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-29825
Quantity: 5 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-29825
Quantity: 5 available
Seller: medimops, Berlin, Germany
Condition: as new. Wie neu/Like new. Seller Inventory # M01617298638-N
Quantity: 1 available