The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702–703), was stimulated by Denis Burkitt’s rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor’s etiology (Nature194:232–234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral–host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s.
"synopsis" may belong to another edition of this title.
The application of recombinant DNA technology to the analysis of Epstein-Barr virus (EBV) is rapidly developing sufficient insight into the virus-host interaction, so that its role in disease pathology is now often discernible and can increasingly be interdicted. In Epstein-Barr Virus Protocols, Joanna Wilson and Gerhard May have assembled a collection of the key molecular biology protocols used in the analysis of Epstein-Barr virus, along with a series of valuable immunology, cell biology, and transgenic mouse protocols. Described in step-by-step detail by experts who use them regularly, these readily reproducible techniques include methods for gene expression with mini-EBV plasmids, for expression analysis by FISH, for EBV detection and quantitation, and for cell proliferation and death assays. In addition, the authors provide information on EBV-based vectors, an up-to-date map of EBV, a comprehensive table of available latent protein antisera, and assays from in vitro to cell to organ to organism levels.
Timely and highly practical, Epstein-Barr Virus Protocols provides powerful tools for elucidating the life cycle of EBV and its host interactions, work that promises the emergence of major new treatments and cures for EBV-associated diseases, including several forms of human cancer.
"About this title" may belong to another edition of this title.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781617371370
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2811580148100
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702-703), was stimulated by Denis Burkitt's rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor's etiology (Nature194:232-234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral-host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s. 452 pp. Englisch. Seller Inventory # 9781617371370
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 4256664
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 454. Seller Inventory # 263103050
Quantity: 4 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781617371370_new
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 454 50 Illus. (1 Col.). Seller Inventory # 5826197
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702¿703), was stimulated by Denis Burkitt¿s rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor¿s etiology (Nature194:232¿234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral¿host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s.Humana Press in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 452 pp. Englisch. Seller Inventory # 9781617371370
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 454. Seller Inventory # 183103040
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702-703), was stimulated by Denis Burkitt's rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor's etiology (Nature194:232-234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral-host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s. Seller Inventory # 9781617371370
Quantity: 1 available