Deep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us.
Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation-an efficient way to calculate the gradients of weight parameters-and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays.
By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning.
"synopsis" may belong to another edition of this title.
Koki Saitoh was born in Tsushima, Nagasaki in 1984. He graduated from the engineering department of the Tokyo Institute of Technology and completed a master’s course at the Graduate School of Interdisciplinary Information Studies at the University of Tokyo. Currently, he conducts research and development in computer vision and machine learning. He has authored Python 3 in Practice, The Elements of Computing Systems, and Building Machine Learning Systems with Python, translations of which are published by O’Reilly, Japan.
"About this title" may belong to another edition of this title.
US$ 3.75 shipping within U.S.A.
Destination, rates & speedsSeller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_433702541
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 42623761-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2912160210180
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781800206137
Quantity: 2 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation 1.2. Book. Seller Inventory # BBS-9781800206137
Quantity: 5 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781800206137
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 42623761
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781800206137
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781800206137
Quantity: Over 20 available
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Discover ways to implement various deep learning algorithms by leveraging Python and other technologiesKey FeaturesLearn deep learning models through several activitiesBegin with simple machine learning problems, and finish by building a complex system of your ownTeach your machines to see by mastering the technologies required for image recognitionBook DescriptionDeep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us. Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation-an efficient way to calculate the gradients of weight parameters-and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays. By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning.What you will learnUse Python with minimum external sources to implement deep learning programsStudy the various deep learning and neural network theoriesLearn how to determine learning coefficients and the initial values of weightsImplement trends such as Batch Normalization, Dropout, and AdamExplore applications like automatic driving, image generation, and reinforcement learningWho this book is forDeep Learning from the Basics is designed for data scientists, data analysts, and developers who want to use deep learning techniques to develop efficient solutions. This book is ideal for those who want a deeper understanding as well as an overview of the technologies. Some working knowledge of Python is a must. Knowledge of NumPy and pandas will be beneficial, but not essential. Seller Inventory # LU-9781800206137
Quantity: Over 20 available