Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and Python
Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release.
This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI.
By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.
This book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.
"synopsis" may belong to another edition of this title.
Andrich van Wyk has 15 years of experience in machine learning R&D and building AI-driven solutions. He also has broad experience as a software engineer and architect with over a decade of industry experience working on enterprise systems.
He graduated cum laude with an M.Sc. in Computer Science from the University of Pretoria. His work focused on neural networks and population-based algorithms such as Particle Swarm Optimization and Honey-Bee Foraging.
Andrich also writes about software and machine learning on his blog and his Substack. He currently resides in South Africa with his wife and daughter.
"About this title" may belong to another edition of this title.
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Machine Learning with LightGBM and Python: A practitioner's guide to developing production-ready machine learning systems 0.97. Book. Seller Inventory # BBS-9781800564749
Quantity: 5 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781800564749
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781800564749
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781800564749
Quantity: Over 20 available
Seller: Russell Books, Victoria, BC, Canada
paperback. Condition: New. Special order direct from the distributor. Seller Inventory # ING9781800564749
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781800564749_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Seller Inventory # C9781800564749
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and PythonKey Features:Get started with LightGBM, a powerful gradient-boosting library for building ML solutionsApply data science processes to real-world problems through case studiesElevate your software by building machine learning solutions on scalable platformsPurchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release.This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions.Starting with simple machine learning models in scikit-learn, you'll explore the intricacies of gradient boosting machines and LightGBM. You'll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems.As you progress, you'll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI.By the end of this book, you'll be well equipped to use various state-of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.What You Will Learn:Get an overview of ML and working with data and models in Python using scikit-learnExplore decision trees, ensemble learning, gradient boosting, DART, and GOSSMaster LightGBM and apply it to classification and regression problemsTune and train your models using AutoML with FLAML and OptunaBuild ML pipelines in Python to train and deploy models with secure and performant APIsScale your solutions to production readiness with AWS Sagemaker, PostgresML, and DaskWho this book is for:This book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book.The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask. Seller Inventory # 9781800564749
Quantity: 1 available