Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods.
This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.
"synopsis" may belong to another edition of this title.
Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany; Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods.
This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.
"About this title" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels. 296 pp. Englisch. Seller Inventory # 9783110255249
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Thomas Schuster, Carl. Seller Inventory # 4456100
Quantity: Over 20 available
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Regularization Methods in Banach Spaces | Thomas Schuster (u. a.) | Buch | XI | Englisch | 2012 | De Gruyter | EAN 9783110255249 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu Print on Demand. Seller Inventory # 106504731
Quantity: 5 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods.This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.Walter de Gruyter, Genthiner Straße 13, 10785 Berlin 296 pp. Englisch. Seller Inventory # 9783110255249
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels. Seller Inventory # 9783110255249
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 296 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Seller Inventory # 12328034/12
Quantity: 1 available
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Hardback. Condition: New. Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels. Seller Inventory # LU-9783110255249
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
Hardback. Condition: New. Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels. Seller Inventory # LU-9783110255249