Introduction.- Spaces of Test Functions.- Schwartz Distributions.- Calculus for Distributions.- Distributions as Derivatives of Functions.- Tensor Products.- Convolution Products.- Applications of Convolution.- Holomorphic Functions.- Fourier Transformations.- Distributions as Boundary Values of Analytic Functions.- Other Spaces of Generalized Functions.- Sobolev Spaces.- Hilbert Spaces: A Brief Historical Introduction.- Inner Product Spaces and Hilbert Spaces.- Geometry of Hilbert Spaces.- Separable Hilbert Spaces.- Direct Sums and Tensor Products.- Topological Aspects.- Linear Operators.- Quadratic Forms.- Bounded Linear Operators.- Special Classes of Linear Operators.- Elements of Spectral Theory.- Compact Operators.- Hilbert-Schmidt and Trace Class Operators.- The Spectral Theorem.- Some Applications of the Spectral Representation.- Spectral Analysis in Rigged Hilbert Spaces.- Operator Algebras and Positive Mappings.- Positive Mappings in Quantum Physics.- Introduction.- Direct Methods in the Calculus of Variations.- Differential Calculus on Banach Spaces and Extrema of Functions.- Constrained Minimization Problems (Method of Lagrange Multipliers).- Boundary and Eigenvalue Problems.- Density Functional Theory of Atoms and Molecules.- Appendices.- Index.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want