This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression thathas proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.
"synopsis" may belong to another edition of this title.
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression thathas proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 25808442
Quantity: 15 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 25808442-n
Quantity: 15 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener-E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783319307633
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319307633_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783319307633
Quantity: 10 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 226. Seller Inventory # 26375271909
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener-E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature. 244 pp. Englisch. Seller Inventory # 9783319307633
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 226. Seller Inventory # 371822138
Quantity: 4 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Series: Operator Theory: Advances and Applications. Num Pages: 244 pages, 2 black & white illustrations, biography. BIC Classification: PBKF; PBKL; PBT. Category: (G) General (US: Trade). Dimension: 235 x 155 x 13. Weight in Grams: 532. . 2015. 2nd revised and extended ed. 2015. Paperback. . . . . Seller Inventory # V9783319307633
Quantity: 15 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 226. Seller Inventory # 18375271919
Quantity: 4 available