Spiking neural network (SNN) plays an essential role in classification problems. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Evolutionary algorithms, mainly differential evolution (DE) have been used for enhancing ESNN algorithm. However, many real-world optimisation problems include several contradictory objectives. Rather than single optimisation, Multi-Objective Optimisation (MOO) can be utilised as a set of optimal solutions to solve these problems.In this book, Harmony Search (HS) and memetic approach were used to improve the performance of MOO with ESNN. Consequently, Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) was applied to improve ESNN structure and accuracy rates. Standard data sets from the UCI machine learning are used for evaluating the performance of this enhanced multi objective hybrid model. The experimental results have proved that the Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) gives better results in terms of accuracy and network structure.
"synopsis" may belong to another edition of this title.
Received MSc in Computer Science at the UST and PhD in Computer Science (Artificial Intelligence) at the University Teknologi Malaysia (UTM). He is interested in cognitive science, brain modelling, spiking neural networks, optimisation methods. His research interest includes data science, big data,deep learning,parallel programming, statistics and IOT.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020117166
Quantity: Over 20 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Multi- Objective Evolutionary Algorithms of Spiking Neural Network 0.23. Book. Seller Inventory # BBS-9783330332683
Quantity: 5 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783330332683
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783330332683
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783330332683
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783330332683_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783330332683
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Spiking neural network (SNN) plays an essential role in classification problems. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Evolutionary algorithms, mainly differential evolution (DE) have been used for enhancing ESNN algorithm. However, many real-world optimisation problems include several contradictory objectives. Rather than single optimisation, Multi-Objective Optimisation (MOO) can be utilised as a set of optimal solutions to solve these problems.In this book, Harmony Search (HS) and memetic approach were used to improve the performance of MOO with ESNN. Consequently, Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) was applied to improve ESNN structure and accuracy rates. Standard data sets from the UCI machine learning are used for evaluating the performance of this enhanced multi objective hybrid model. The experimental results have proved that the Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) gives better results in terms of accuracy and network structure. 64 pp. Englisch. Seller Inventory # 9783330332683
Quantity: 2 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 64 pages. 8.66x5.91x0.15 inches. In Stock. Seller Inventory # x-3330332689
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Spiking neural network (SNN) plays an essential role in classification problems. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Evolutionary algorithms, mainly differential evolution (DE) have been used for enhancing ESNN algorithm. However, many real-world optimisation problems include several contradictory objectives. Rather than single optimisation, Multi-Objective Optimisation (MOO) can be utilised as a set of optimal solutions to solve these problems.In this book, Harmony Search (HS) and memetic approach were used to improve the performance of MOO with ESNN. Consequently, Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) was applied to improve ESNN structure and accuracy rates. Standard data sets from the UCI machine learning are used for evaluating the performance of this enhanced multi objective hybrid model. The experimental results have proved that the Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) gives better results in terms of accuracy and network structure. Seller Inventory # 9783330332683
Quantity: 1 available