US$ 8.72 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 400475479
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396982920
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Bündel. Condition: Neu. Neuware -- Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Not Elektronisches Buch auf GitHub- Ihr exklusiver Vorteil: Elektronisches Buch inside beim Kauf des gedruckten BuchesDas Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren: Vektorisierung von Wörtern mit Word Embedding. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen. Arbeit mit der Transformers-Bibliothek und Hugging Face.Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. 256 pp. Deutsch. Seller Inventory # 9783446473638
Quantity: 2 available
Seller: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germany
Bündel. Condition: Neu. Neuware -- Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Not Elektronisches Buch auf GitHub- Ihr exklusiver Vorteil: Elektronisches Buch inside beim Kauf des gedruckten BuchesDas Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren: Vektorisierung von Wörtern mit Word Embedding. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen. Arbeit mit der Transformers-Bibliothek und Hugging Face.Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. 256 pp. Deutsch. Seller Inventory # 9783446473638
Quantity: 2 available
Seller: Wegmann1855, Zwiesel, Germany
Bündel. Condition: Neu. Neuware -- Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Not Elektronisches Buch auf GitHub- Ihr exklusiver Vorteil: Elektronisches Buch inside beim Kauf des gedruckten BuchesDas Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren:. Vektorisierung von Wörtern mit Word Embedding. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen. Arbeit mit der Transformers-Bibliothek und Hugging Face.Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. Seller Inventory # 9783446473638
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Bündel. Condition: Neu. Neuware - - Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Not Elektronisches Buch auf GitHub- Ihr exklusiver Vorteil: Elektronisches Buch inside beim Kauf des gedruckten BuchesDas Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren:- Vektorisierung von Wörtern mit Word Embedding.- Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen.- Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen.- Arbeit mit der Transformers-Bibliothek und Hugging Face.Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. Seller Inventory # 9783446473638
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. - Von der logistischen Regression ueber Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verstaendlich mit textbasierten Erklaerungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausfuehrliche Python-Code-Erlaeut. Seller Inventory # 580242069
Quantity: 5 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Bündel. Condition: Neu. Neuware -- Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Not Elektronisches Buch auf GitHub- Ihr exklusiver Vorteil: Elektronisches Buch inside beim Kauf des gedruckten BuchesDas Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren:. Vektorisierung von Wörtern mit Word Embedding. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen. Arbeit mit der Transformers-Bibliothek und Hugging Face.Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen.Hanser Fachbuchverlag, Kolberger Str. 22, 81679 München 256 pp. Deutsch. Seller Inventory # 9783446473638
Quantity: 2 available