Revision with unchanged content. Mobile computing devices like PDAs, cell phones or laptops have become an indispensable part of everyday's life. As these systems are battery-powered and the user expects long operating times, energy-aware operation is crucial. Hardware components for mobile devices offer low-power operating modes that achieve energy savings at the cost of degraded performance or appli-cation quality, e.g., by reducing the CPU speed. This dissertation investigates software-controlled energy management and addresses these two, often conflicting increasing the embedded system's runtime by saving energy and providing sufficient application quality. With a cooperative approach between the operating system and individual applications or the user, task-specific trade-offs between these goals can be made. Prototype implementations for embedded Linux are presented and evaluated with energy measurements, proving the feasibility of task-specific power management. This dissertation has a strong practical focus, being a valuable guide for computer scientists and software engineers both in academia and industry who deal with operating system design and low-power software architectures.
"synopsis" may belong to another edition of this title.
Dr.-Ing. Andreas Weißel, Dipl.-Inf. (Friedrich-Alexander-University Erlangen-Nuremberg), Dipl.-Kfm. (University of Hagen). Project leader at the DSPG Technologies GmbH (formerly NXP Semiconductors Germany GmbH), Nuremberg; Member of the Supervisory Board of the Config e.G., Buckenhof.
"About this title" may belong to another edition of this title.
US$ 26.96 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Revision with unchanged content. Mobile computing devices like PDAs, cell phones or laptops have become an indispensable part of everyday's life. As these systems are battery-powered and the user expects long operating times, energy-aware operation is crucial. Hardware components for mobile devices offer low-power operating modes that achieve energy savings at the cost of degraded performance or appli cation quality, e.g., by reducing the CPU speed. This dissertation investigates software-controlled energy management and addresses these two, often conflicting goals: increasing the embedded system's runtime by saving energy and providing sufficient application quality. With a cooperative approach between the operating system and individual applications or the user, task-specific trade-offs between these goals can be made. Prototype implementations for embedded Linux are presented and evaluated with energy measurements, proving the feasibility of task-specific power management. This dissertation has a strong practical focus, being a valuable guide for computer scientists and software engineers both in academia and industry who deal with operating system design and low-power software architectures. 140 pp. Englisch. Seller Inventory # 9783639416275
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Weissel AndreasDr.-Ing. Andreas Weissel, Dipl.-Inf. (Friedrich-Alexander-University Erlangen-Nuremberg), Dipl.-Kfm. (University of Hagen). Project leader at the DSPG Technologies GmbH (formerly NXP Semiconductors Germany GmbH), Nurembe. Seller Inventory # 4985842
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Revision with unchanged content. Mobile computing devices like PDAs, cell phones or laptops have become an indispensable part of everyday's life. As these systems are battery-powered and the user expects long operating times, energy-aware operation is crucial. Hardware components for mobile devices offer low-power operating modes that achieve energy savings at the cost of degraded performance or application quality, e.g., by reducing the CPU speed. This dissertation investigates software-controlled energy management and addresses these two, often conflicting goals: increasing the embedded system's runtime by saving energy and providing sufficient application quality. With a cooperative approach between the operating system and individual applications or the user, task-specific trade-offs between these goals can be made. Prototype implementations for embedded Linux are presented and evaluated with energy measurements, proving the feasibility of task-specific power management. This dissertation has a strong practical focus, being a valuable guide for computer scientists and software engineers both in academia and industry who deal with operating system design and low-power software architectures.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 140 pp. Englisch. Seller Inventory # 9783639416275
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Revision with unchanged content. Mobile computing devices like PDAs, cell phones or laptops have become an indispensable part of everyday's life. As these systems are battery-powered and the user expects long operating times, energy-aware operation is crucial. Hardware components for mobile devices offer low-power operating modes that achieve energy savings at the cost of degraded performance or appli cation quality, e.g., by reducing the CPU speed. This dissertation investigates software-controlled energy management and addresses these two, often conflicting goals: increasing the embedded system's runtime by saving energy and providing sufficient application quality. With a cooperative approach between the operating system and individual applications or the user, task-specific trade-offs between these goals can be made. Prototype implementations for embedded Linux are presented and evaluated with energy measurements, proving the feasibility of task-specific power management. This dissertation has a strong practical focus, being a valuable guide for computer scientists and software engineers both in academia and industry who deal with operating system design and low-power software architectures. Seller Inventory # 9783639416275
Quantity: 1 available