The objective of this study is to investigate the accuracy and computational efficiency of two formulations for performing the geometrically nonlinear thermal analysis of plane framed structures. The formulations considered are the followings: the Beam-Column formulation and the updated Lagrangian version of the finite element formulation. The Beam-Column method is based on an Eulerian formulation that incorporates effects of large joint displacements. Local member force-deformation relationships are based on...
US$ 33.18 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 25.99 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The objective of this study is to investigate the accuracy and computational efficiency of two formulations for performing the geometrically nonlinear thermal analysis of plane framed structures. The formulations considered are the followings: the Beam-Column formulation and the updated Lagrangian version of the finite element formulation. The Beam-Column method is based on an Eulerian formulation that incorporates effects of large joint displacements. Local member force-deformation relationships are based on the Beam-Column approach that includes the axial strain, flexural bowing, and thermal strain. The results for nonlinear thermal responses were generated for three plane structures to compare the accuracy of deflection responses and the computational efficiency of the Newton-Raphson iteration cycles required.The results indicate that the Beam-Column method is powerful for the thermal analysis of plane frames. The accuracy of the SAP2000 generally depends on the number of steps and/or the number of elements per natural member. The Beam-Column formulation requires considerably fewer elements per member, fewer iteration cycles, and less time for thermal analysis than the SAP2000. 84 pp. Englisch. Seller Inventory # 9783659647581
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The objective of this study is to investigate the accuracy and computational efficiency of two formulations for performing the geometrically nonlinear thermal analysis of plane framed structures. The formulations considered are the followings: the Beam-Column formulation and the updated Lagrangian version of the finite element formulation. The Beam-Column method is based on an Eulerian formulation that incorporates effects of large joint displacements. Local member force-deformation relationships are based on the Beam-Column approach that includes the axial strain, flexural bowing, and thermal strain. The results for nonlinear thermal responses were generated for three plane structures to compare the accuracy of deflection responses and the computational efficiency of the Newton-Raphson iteration cycles required.The results indicate that the Beam-Column method is powerful for the thermal analysis of plane frames. The accuracy of the SAP2000 generally depends on the number of steps and/or the number of elements per natural member. The Beam-Column formulation requires considerably fewer elements per member, fewer iteration cycles, and less time for thermal analysis than the SAP2000. Seller Inventory # 9783659647581
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA77336596475866
Quantity: 1 available