As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated.
"synopsis" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 1997896-n
Quantity: 15 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. This is the second volume of a set of two devoted to the operator approach to linear problems in hydrodynamics (Volume 1: 3-7643-5406-2). It presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The work relies on the authors' and their students' works of the last 30-40 years. The readers are not supposed to be familiar with the methods of functional analysis. The second part of the present volume collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region.The book is particularly useful for researchers, engineers and students in fluid mechanics and mathematics interested in operator theoretical methods for the analysis of hydrodynamical problems. Presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The book collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783764321901
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110058554
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated. 444 pp. Englisch. Seller Inventory # 9783764321901
Quantity: 2 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Unique collection of problems in hydrodynamics of viscous fluidsTranslated from the Russian original by Larisa and Mircea MartinThis is the second volume of a set of two devoted to the operator approach to linear problems in hydrodynami. Seller Inventory # 5278852
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783764321901_new
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 472 pp. Englisch. Seller Inventory # 9783764321901
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated. Seller Inventory # 9783764321901
Quantity: 1 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The book collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region. Series: Operator Theory: Advances and Applications. Num Pages: 468 pages, 1 colour illustrations, biography. BIC Classification: PDE; PHDF; TBJ; TGMF. Category: (G) General (US: Trade); (U) Tertiary Education (US: College). Dimension: 234 x 156 x 26. Weight in Grams: 840. . 2003. Hardback. . . . . Seller Inventory # V9783764321901
Quantity: 15 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. Presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The book collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region. Series: Operator Theory: Advances and Applications. Num Pages: 468 pages, 1 colour illustrations, biography. BIC Classification: PDE; PHDF; TBJ; TGMF. Category: (G) General (US: Trade); (U) Tertiary Education (US: College). Dimension: 234 x 156 x 26. Weight in Grams: 840. . 2003. Hardback. . . . . Books ship from the US and Ireland. Seller Inventory # V9783764321901
Quantity: 15 available