This work presents a novel approach to modeling, analysis and diagnosis of coupled mechatronical systems with partially autonomous behavior and asynchronous state transitions. The systems under consideration are assumed to have the following properties: The internal interactions are immeasurable but reliable and the measurements relevant for diagnosis are given as a sequence of events. Asynchronous networks of input/output automata (I/O-automata) are developed to cope with partial coupling between components and to reduce the computational complexity of the diagnostic algorithms. I/O-automata are used to model those components. Their measurable inputs and outputs are modeled as control signals. Interconnection signals are used to model the internal dependencies among the components. They are linked via an interaction block to one another. The criterion known from synchronous networks of I/O-automata is extended to ensure the well-posedness of this modeling formalism. To check for partially autonomous behavior, two types of autonomy are introduced and discussed: Structural autonomy and state-dependent autonomy. To carry out the diagnosis, three different information structures are investigated: Centralized, decentralized and partially coordinated. The centralized approach yields the ideal diagnostic result, but reduction of the computational complexity by using online composition is rather small. Further reduction of the computational complexity is accomplished by decentralized diagnosis. It yields only in the case of state-dependent autonomy a complete and sound diagnostic result. In general, the lack of soundness arises. Both, obtaining an ideal diagnostic result and reducing the computational complexity, is obtained by the partially coordinated diagnostic algorithm.
"synopsis" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: ISD LLC, Bristol, CT, U.S.A.
paperback. Condition: New. Seller Inventory # 545991
Quantity: 3 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 45932512
Quantity: 3 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 45932512-n
Quantity: 3 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This work presents a novel approach to modeling, analysis and diagnosis of coupled mechatronical systems with partially autonomous behavior and asynchronous state transitions. The systems under consideration are assumed to have the following properties: The internal interactions are immeasurable but reliable and the measurements relevant for diagnosis are given as a sequence of events. Asynchronous networks of input/output automata (I/O-automata) are developed to cope with partial coupling between components and to reduce the computational complexity of the diagnostic algorithms. I/O-automata are used to model those components. Their measurable inputs and outputs are modeled as control signals. Interconnection signals are used to model the internal dependencies among the components. They are linked via an interaction block to one another. The criterion known from synchronous networks of I/O-automata is extended to ensure the well-posedness of this modeling formalism. To check for partially autonomous behavior, two types of autonomy are introduced and discussed: Structural autonomy and state-dependent autonomy.To carry out the diagnosis, three different information structures are investigated: Centralized, decentralized and partially coordinated. The centralized approach yields the ideal diagnostic result, but reduction of the computational complexity by using online composition is rather small. Further reduction of the computational complexity is accomplished by decentralized diagnosis. It yields only in the case of state-dependent autonomy a complete and sound diagnostic result. In general, the lack of soundness arises. Both, obtaining an ideal diagnostic result and reducing the computational complexity, is obtained by the partially coordinated diagnostic algorithm. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783832532598
Quantity: 1 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. 2012. Paperback. . . . . . Books ship from the US and Ireland. Seller Inventory # V9783832532598
Quantity: 2 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. 2012. Paperback. . . . . . Seller Inventory # V9783832532598
Quantity: 2 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condition: new. Paperback. This work presents a novel approach to modeling, analysis and diagnosis of coupled mechatronical systems with partially autonomous behavior and asynchronous state transitions. The systems under consideration are assumed to have the following properties: The internal interactions are immeasurable but reliable and the measurements relevant for diagnosis are given as a sequence of events. Asynchronous networks of input/output automata (I/O-automata) are developed to cope with partial coupling between components and to reduce the computational complexity of the diagnostic algorithms. I/O-automata are used to model those components. Their measurable inputs and outputs are modeled as control signals. Interconnection signals are used to model the internal dependencies among the components. They are linked via an interaction block to one another. The criterion known from synchronous networks of I/O-automata is extended to ensure the well-posedness of this modeling formalism. To check for partially autonomous behavior, two types of autonomy are introduced and discussed: Structural autonomy and state-dependent autonomy.To carry out the diagnosis, three different information structures are investigated: Centralized, decentralized and partially coordinated. The centralized approach yields the ideal diagnostic result, but reduction of the computational complexity by using online composition is rather small. Further reduction of the computational complexity is accomplished by decentralized diagnosis. It yields only in the case of state-dependent autonomy a complete and sound diagnostic result. In general, the lack of soundness arises. Both, obtaining an ideal diagnostic result and reducing the computational complexity, is obtained by the partially coordinated diagnostic algorithm. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9783832532598
Quantity: 1 available