Items related to Crystalline Silicon Surface Passivation by Amorphous...

Crystalline Silicon Surface Passivation by Amorphous Silicon Compounds: Modeling, experiments, solar cells and modules - Softcover

 
9783838128795: Crystalline Silicon Surface Passivation by Amorphous Silicon Compounds: Modeling, experiments, solar cells and modules

Synopsis

Solar cells based on crystalline silicon (c-Si) have the potential to make photovoltaic electricity cheaper than coal-based electric power generation within less than 10 years. The largest cost decrease potential on the cell level lies with improved electronic surface passivation. In this work, the current industry standard, amorphous silicon nitride (a-SiNx:H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD), is investigated and compared to amorphous silicon carbide, silicon carbonitride and silicon oxynitride films deposited by both high- and for the first time also low-frequency (LF) PECVD. It is shown that and an explanation offered as to why LF PECVD is capable of excellent surface passivation, comparable to remote-plasma results in literature and higher than previously published for LF PECVD. The achieved surface passivation quality is sufficient for dielectric rear-surface passivation without an underlying diffused back surface field. It is also shown that the purity grade of precursor gases used for film deposition can be lowered significantly without affecting cell efficiency and long-term stability on the module level, allowing for further cost reduction.

"synopsis" may belong to another edition of this title.

About the Author

Roman Petres, PhD: Master of Science in Physics from University of Konstanz, Germany, followed by PhD studies at the Photovoltaics Department of the University of Konstanz and at the International Solar Energy Research Center Konstanz that he co-founded in 2005 and co-directed until 2010. Independent Photovoltaic Technology Consultant since 2011.

"About this title" may belong to another edition of this title.

Search results for Crystalline Silicon Surface Passivation by Amorphous...

Seller Image

Roman Petres
ISBN 10: 3838128796 ISBN 13: 9783838128795
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Solar cells based on crystalline silicon (c-Si) have the potential to make photovoltaic electricity cheaper than coal-based electric power generation within less than 10 years. The largest cost decrease potential on the cell level lies with improved electronic surface passivation. In this work, the current industry standard, amorphous silicon nitride (a-SiNx:H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD), is investigated and compared to amorphous silicon carbide, silicon carbonitride and silicon oxynitride films deposited by both high- and for the first time also low-frequency (LF) PECVD. It is shown that and an explanation offered as to why LF PECVD is capable of excellent surface passivation, comparable to remote-plasma results in literature and higher than previously published for LF PECVD. The achieved surface passivation quality is sufficient for dielectric rear-surface passivation without an underlying diffused back surface field. It is also shown that the purity grade of precursor gases used for film deposition can be lowered significantly without affecting cell efficiency and long-term stability on the module level, allowing for further cost reduction. 116 pp. Englisch. Seller Inventory # 9783838128795

Contact seller

Buy New

US$ 60.09
Convert currency
Shipping: US$ 24.90
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Roman Petres
ISBN 10: 3838128796 ISBN 13: 9783838128795
New Taschenbuch
Print on Demand

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Solar cells based on crystalline silicon (c-Si) have the potential to make photovoltaic electricity cheaper than coal-based electric power generation within less than 10 years. The largest cost decrease potential on the cell level lies with improved electronic surface passivation. In this work, the current industry standard, amorphous silicon nitride (a-SiNx:H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD), is investigated and compared to amorphous silicon carbide, silicon carbonitride and silicon oxynitride films deposited by both high- and for the first time also low-frequency (LF) PECVD. It is shown that and an explanation offered as to why LF PECVD is capable of excellent surface passivation, comparable to remote-plasma results in literature and higher than previously published for LF PECVD. The achieved surface passivation quality is sufficient for dielectric rear-surface passivation without an underlying diffused back surface field. It is also shown that the purity grade of precursor gases used for film deposition can be lowered significantly without affecting cell efficiency and long-term stability on the module level, allowing for further cost reduction. Seller Inventory # 9783838128795

Contact seller

Buy New

US$ 60.09
Convert currency
Shipping: US$ 31.34
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Roman Petres
ISBN 10: 3838128796 ISBN 13: 9783838128795
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Petres RomanRoman Petres, PhD: Master of Science in Physics from University of Konstanz, Germany, followed by PhD studies at the Photovoltaics Department of the University of Konstanz and at the International Solar Energy Research Ce. Seller Inventory # 5407179

Contact seller

Buy New

US$ 49.82
Convert currency
Shipping: US$ 53.03
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket