Vertical-cavity surface-emitting lasers are promising devices on the semiconductor laser market, and offer numerous advantages over edge-emitters in the low power regime. Physics-based comprehensive modeling allows one to shorten the development period of future products and to reduce the design costs. These devices are sometimes noncircular, either owing to anisotropic oxidation speed or to achieve special characteristics, such as high-power single-mode output. Problems arising with complex structures call for three-dimensional numerical solutions. This book reviews the simulation methods for vertical-cavity surface-emitting lasers and provides novel approaches to investigate their more challenging variants. Electrical, thermal and optical properties are demonstrated on illustrative examples. The analysis helps to get insight into these exciting lasers, and should be especially useful to professionals in telecommunication and modeling fields.
"synopsis" may belong to another edition of this title.
Péter Nyakas received the M.Sc. degree in engineering physics, and the Ph.D. degree in physics, both from Budapest University of Technology and Economics, Budapest, Hungary. He joined the Furukawa Electric Institute of Technology Ltd., Budapest, as a research engineer. His research is focused on numerical modeling of optoelectronic devices.
"About this title" may belong to another edition of this title.
Shipping:
US$ 32.31
From United Kingdom to U.S.A.
Shipping:
US$ 24.83
From Germany to U.S.A.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Vertical-cavity surface-emitting lasers are promising devices on the semiconductor laser market, and offer numerous advantages over edge-emitters in the low power regime. Physics-based comprehensive modeling allows one to shorten the development period of future products and to reduce the design costs. These devices are sometimes noncircular, either owing to anisotropic oxidation speed or to achieve special characteristics, such as high-power single-mode output. Problems arising with complex structures call for three-dimensional numerical solutions. This book reviews the simulation methods for vertical-cavity surface-emitting lasers and provides novel approaches to investigate their more challenging variants. Electrical, thermal and optical properties are demonstrated on illustrative examples. The analysis helps to get insight into these exciting lasers, and should be especially useful to professionals in telecommunication and modeling fields. 120 pp. Englisch. Seller Inventory # 9783838383354
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Vertical-cavity surface-emitting lasers are promising devices on the semiconductor laser market, and offer numerous advantages over edge-emitters in the low power regime. Physics-based comprehensive modeling allows one to shorten the development period of future products and to reduce the design costs. These devices are sometimes noncircular, either owing to anisotropic oxidation speed or to achieve special characteristics, such as high-power single-mode output. Problems arising with complex structures call for three-dimensional numerical solutions. This book reviews the simulation methods for vertical-cavity surface-emitting lasers and provides novel approaches to investigate their more challenging variants. Electrical, thermal and optical properties are demonstrated on illustrative examples. The analysis helps to get insight into these exciting lasers, and should be especially useful to professionals in telecommunication and modeling fields. Seller Inventory # 9783838383354
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA77838383833546
Quantity: 1 available