Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput.
"synopsis" may belong to another edition of this title.
Mahesh Uttamchandani joined DSO National Laboratories in 2007, after graduating with a PhD in Biology from the National Univeristy of Singapore (NUS). He also concurrently holds an Assistant Professor position at the Departments of Chemistry and Biological Sciences at NUS. His research interests include catalomics, genetics and proteomics.
"About this title" may belong to another edition of this title.
US$ 33.35 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 26.80 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput. 228 pp. Englisch. Seller Inventory # 9783844385755
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Uttamchandani MaheshMahesh Uttamchandani joined DSO National Laboratories in 2007, after graduating with a PhD in Biology from the National Univeristy of Singapore (NUS). He also concurrently holds an Assistant Professor position a. Seller Inventory # 5476095
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput.Books on Demand GmbH, Überseering 33, 22297 Hamburg 228 pp. Englisch. Seller Inventory # 9783844385755
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput. Seller Inventory # 9783844385755
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79638443857546
Quantity: 1 available