This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator.
"synopsis" may belong to another edition of this title.
Dr. Joshua Eggenberger received his PhD in mathematical science from Northern Illinois University in 2010. He has taught undergraduate mathematics courses at NIU, Kishwaukee College, and Anoka-Ramsey Community College, and is currently an assistant professor at Ashford University in Clinton, Iowa.
"About this title" may belong to another edition of this title.
US$ 33.86 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 26.68 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator. 72 pp. Englisch. Seller Inventory # 9783847337676
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator. Seller Inventory # 9783847337676
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Eggenberger Joshua T.Dr. Joshua Eggenberger received his PhD in mathematical science from Northern Illinois University in 2010. He has taught undergraduate mathematics courses at NIU, Kishwaukee College, and Anoka-Ramsey Community Co. Seller Inventory # 5511012
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Seller Inventory # 9783847337676
Quantity: 2 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA796384733767X6
Quantity: 1 available