There is much literature available regarding the subject of solving the two-dimensional steady-state transport equation that it would be impossible to mention all of them. Nevertheless, the literature concerning convergence and the estimative of the error is scarce. Therefore in this thesis we focus our attention in this direction. In the first part we study the spectral Chebyshev polynomial expansion combined with the Sumudu transform leading to solve, analytically , the neutron transport equation in isotropic one-dimensional media. Next we study the convergence as well as an estimative of error for the spectral solution of the isotropic two-dimenssional discrete ordinates problem where a special quadrature rule is used to discretize in the angular variables, approximating the scalar flux. Finally the spectral equation is derived in a three dimensional setting.
"synopsis" may belong to another edition of this title.
Dr.Abdelouahab Kadem is a Professor of Applied Mathematics,PhD in Mathematics in the Department of Mathematics at University of Sétif. His research interest includes,Integral transforms,Special functions differential equations and Fractional Calculus. He has published several papers in an international journals.
"About this title" may belong to another edition of this title.
Shipping:
US$ 33.18
From United Kingdom to U.S.A.
Shipping:
US$ 26.11
From Germany to U.S.A.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -There is much literature available regarding the subject of solving the two-dimensional steady-state transport equation that it would be impossible to mention all of them. Nevertheless, the literature concerning convergence and the estimative of the error is scarce. Therefore in this thesis we focus our attention in this direction. In the first part we study the spectral Chebyshev polynomial expansion combined with the Sumudu transform leading to solve, analytically , the neutron transport equation in isotropic one-dimensional media. Next we study the convergence as well as an estimative of error for the spectral solution of the isotropic two-dimenssional discrete ordinates problem where a special quadrature rule is used to discretize in the angular variables, approximating the scalar flux. Finally the spectral equation is derived in a three dimensional setting. 92 pp. Englisch. Seller Inventory # 9783848439980
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - There is much literature available regarding the subject of solving the two-dimensional steady-state transport equation that it would be impossible to mention all of them. Nevertheless, the literature concerning convergence and the estimative of the error is scarce. Therefore in this thesis we focus our attention in this direction. In the first part we study the spectral Chebyshev polynomial expansion combined with the Sumudu transform leading to solve, analytically , the neutron transport equation in isotropic one-dimensional media. Next we study the convergence as well as an estimative of error for the spectral solution of the isotropic two-dimenssional discrete ordinates problem where a special quadrature rule is used to discretize in the angular variables, approximating the scalar flux. Finally the spectral equation is derived in a three dimensional setting. Seller Inventory # 9783848439980
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 5522320
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79638484399806
Quantity: 1 available