US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 49730557-n
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # DB-9783988890313
Quantity: 11 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # DB-9783988890313
Quantity: 11 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. Seller Inventory # LU-9783988890313
Quantity: 6 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26403715043
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 409439292
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 49730557-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware - Schließt die Lücke zwischen Grundlagen und Profiwissen Einfache, prägnante Erklärungen zu wichtigen und aktuellen Themen Mit Übungsaufgaben sowie Codebeispielen auf GitHub Sie verfügen bereits über Grundkenntnisse zu maschinellem Lernen und künstlicher Intelligenz, haben aber viele Fragen und wollen tiefer in wesentliche und aktuelle Konzepte eintauchen ML- und KI-Experte Sebastian Raschka greift in diesem Buch die wichtigsten Schlüsselfragen auf und liefert sowohl prägnante als auch einfach verständliche Erklärungen zu komplexen und fortgeschrittenen Themen wie Deep Learning, Überanpassung, Self-Supervised Learning, generative KI, Computer Vision, Natural Language Processing und Modellevaluierung. Viele Beispiele, anschauliche Illustrationen und praktische Übungsaufgaben helfen Ihnen dabei, das Erlernte nicht nur schnell zu verstehen, sondern auch praktisch umzusetzen. Dabei werden weder fortgeschrittene Mathematik- noch Programmierkenntnisse vorausgesetzt - wer tiefer in den Code eintauchen will, findet jedoch im kostenlosen Zusatzmaterial einige Codebeispiele. Aus dem Inhalt: Umgang mit verschiedenen Zufallsquellen beim Training neuronaler Netze Unterscheidung zwischen Encoder- und Decoder-Architekturen in großen Sprachmodellen (LLMs) Verringerung von Überanpassung durch Daten- und Modellmodifikationen Konstruktion von Konfidenzintervallen für Klassifizierer und Optimierung von Modellen mit begrenzten gelabelten Daten Wählen zwischen verschiedenen Multi-GPU-Trainingsparadigmen und verschiedenen Arten von generativen KI-Modellen Verstehen von Performancemetriken für die Verarbeitung natürlicher Sprache 240 pp. Deutsch. Seller Inventory # 9783988890313
Quantity: 2 available
Seller: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware - Schließt die Lücke zwischen Grundlagen und Profiwissen Einfache, prägnante Erklärungen zu wichtigen und aktuellen Themen Mit Übungsaufgaben sowie Codebeispielen auf GitHub Sie verfügen bereits über Grundkenntnisse zu maschinellem Lernen und künstlicher Intelligenz, haben aber viele Fragen und wollen tiefer in wesentliche und aktuelle Konzepte eintauchen ML- und KI-Experte Sebastian Raschka greift in diesem Buch die wichtigsten Schlüsselfragen auf und liefert sowohl prägnante als auch einfach verständliche Erklärungen zu komplexen und fortgeschrittenen Themen wie Deep Learning, Überanpassung, Self-Supervised Learning, generative KI, Computer Vision, Natural Language Processing und Modellevaluierung. Viele Beispiele, anschauliche Illustrationen und praktische Übungsaufgaben helfen Ihnen dabei, das Erlernte nicht nur schnell zu verstehen, sondern auch praktisch umzusetzen. Dabei werden weder fortgeschrittene Mathematik- noch Programmierkenntnisse vorausgesetzt - wer tiefer in den Code eintauchen will, findet jedoch im kostenlosen Zusatzmaterial einige Codebeispiele. Aus dem Inhalt: Umgang mit verschiedenen Zufallsquellen beim Training neuronaler Netze Unterscheidung zwischen Encoder- und Decoder-Architekturen in großen Sprachmodellen (LLMs) Verringerung von Überanpassung durch Daten- und Modellmodifikationen Konstruktion von Konfidenzintervallen für Klassifizierer und Optimierung von Modellen mit begrenzten gelabelten Daten Wählen zwischen verschiedenen Multi-GPU-Trainingsparadigmen und verschiedenen Arten von generativen KI-Modellen Verstehen von Performancemetriken für die Verarbeitung natürlicher Sprache 240 pp. Deutsch. Seller Inventory # 9783988890313
Quantity: 2 available
Seller: Wegmann1855, Zwiesel, Germany
Taschenbuch. Condition: Neu. Neuware -Vertiefendes Wissen von Deep Learning über Computer Vision bis Natural Language Processing Schließt die Lücke zwischen Grundlagen und Profiwissen Einfache, prägnante Erklärungen zu wichtigen und aktuellen Themen Mit Übungsaufgaben sowie Codebeispielen auf GitHubSie verfügen bereits über Grundkenntnisse zu maschinellem Lernen und künstlicher Intelligenz, haben aber viele Fragen und wollen tiefer in wesentliche und aktuelle Konzepte eintauchen ML- und KI-Experte Sebastian Raschka greift in diesem Buch die wichtigsten Schlüsselfragen auf und liefert sowohl prägnante als auch einfach verständliche Erklärungen zu komplexen und fortgeschrittenen Themen wie Deep Learning, Überanpassung, Self-Supervised Learning, generative KI, Computer Vision, Natural Language Processing und Modellevaluierung.Viele Beispiele, anschauliche Illustrationen und praktische Übungsaufgaben helfen Ihnen dabei, das Erlernte nicht nur schnell zu verstehen, sondern auch praktisch umzusetzen. Dabei werden weder fortgeschrittene Mathematik- noch Programmierkenntnisse vorausgesetzt - wer tiefer in den Code eintauchen will, findet jedoch im kostenlosen Zusatzmaterial einige Codebeispiele.Aus dem Inhalt: Umgang mit verschiedenen Zufallsquellen beim Training neuronaler Netze Unterscheidung zwischen Encoder- und Decoder-Architekturen in großen Sprachmodellen (LLMs) Verringerung von Überanpassung durch Daten- und Modellmodifikationen Konstruktion von Konfidenzintervallen für Klassifizierer und Optimierung von Modellen mit begrenzten gelabelten Daten Wählen zwischen verschiedenen Multi-GPU-Trainingsparadigmen und verschiedenen Arten von generativen KI-Modellen Verstehen von Performancemetriken für die Verarbeitung natürlicher Sprache. Seller Inventory # 9783988890313
Quantity: 2 available