With microblogging platforms such as Twitter generating huge amounts of textual data every day, the possibilities of knowledge discovery through Twitter data becomes increasingly relevant. Similar to the public voting mechanismnon websites such as the Internet Movie Database (IMDb) that aggregates movies ratings, Twitter content contains reflections of public opinion about movies. This study aims to explore the use of Twitter content as textual data for predicting the movie rating. In this study, we extract number of tweets and compiled to predict the rating scores of newly released movies. Predictions were done with the algorithms, exploring the tweet polarity. In addition, this study explores the use of several different kinds of tweet classification Algorithm and movie rating algorithm. Results show that movie rating developed by our application is compared to IMDB and Rotten Tomatoes.
"synopsis" may belong to another edition of this title.
Mr. Abhishek Kesharwani ,working as Assistant Professor at United College of Engineering and Research, Computer Science and Engineering dept.This book aims to explore the use of Twitter content as textual data for predicting the movie rating, explain methods of tweet extraction, predicting sentiment of tweets and algorithm for tweet classification.
"About this title" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -With microblogging platforms such as Twitter generating huge amounts of textual data every day, the possibilities of knowledge discovery through Twitter data becomes increasingly relevant. Similar to the public voting mechanismnon websites such as the Internet Movie Database (IMDb) that aggregates movies ratings, Twitter content contains reflections of public opinion about movies. This study aims to explore the use of Twitter content as textual data for predicting the movie rating. In this study, we extract number of tweets and compiled to predict the rating scores of newly released movies. Predictions were done with the algorithms, exploring the tweet polarity. In addition, this study explores the use of several different kinds of tweet classification Algorithm and movie rating algorithm. Results show that movie rating developed by our application is compared to IMDB and Rotten Tomatoes. 68 pp. Englisch. Seller Inventory # 9786202051538
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 68 pages. 8.66x5.91x0.16 inches. In Stock. Seller Inventory # zk6202051531
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kesharwani AbhishekMr. Abhishek Kesharwani ,working as Assistant Professor at United College of Engineering and Research, Computer Science and Engineering dept.This book aims to explore the use of Twitter content as textual data for . Seller Inventory # 174674898
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -With microblogging platforms such as Twitter generating huge amounts of textual data every day, the possibilities of knowledge discovery through Twitter data becomes increasingly relevant. Similar to the public voting mechanismnon websites such as the Internet Movie Database (IMDb) that aggregates movies ratings, Twitter content contains reflections of public opinion about movies. This study aims to explore the use of Twitter content as textual data for predicting the movie rating. In this study, we extract number of tweets and compiled to predict the rating scores of newly released movies. Predictions were done with the algorithms, exploring the tweet polarity. In addition, this study explores the use of several different kinds of tweet classification Algorithm and movie rating algorithm. Results show that movie rating developed by our application is compared to IMDB and Rotten Tomatoes.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. Seller Inventory # 9786202051538
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - With microblogging platforms such as Twitter generating huge amounts of textual data every day, the possibilities of knowledge discovery through Twitter data becomes increasingly relevant. Similar to the public voting mechanismnon websites such as the Internet Movie Database (IMDb) that aggregates movies ratings, Twitter content contains reflections of public opinion about movies. This study aims to explore the use of Twitter content as textual data for predicting the movie rating. In this study, we extract number of tweets and compiled to predict the rating scores of newly released movies. Predictions were done with the algorithms, exploring the tweet polarity. In addition, this study explores the use of several different kinds of tweet classification Algorithm and movie rating algorithm. Results show that movie rating developed by our application is compared to IMDB and Rotten Tomatoes. Seller Inventory # 9786202051538