深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌入将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。通过阅读本书,你将学到:NLP的核心概念和各种自然语言处理方法使用TensorFlow函数创建神经网络以完成NLP任务将海量数据处理成可用于深度学习应用的单词表示使用CNN和RNN执行句子分类和语言生成使用*的RNN(如长短期记忆)执行复杂的文本生成任务从头开始编写一个真正的神经机器翻译器未来的NLP趋势和创新
"synopsis" may belong to another edition of this title.
US$ 10.56 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 18.00 shipping from China to U.S.A.
Destination, rates & speedsSeller: WeBuyBooks, Rossendale, LANCS, United Kingdom
Condition: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Seller Inventory # wbb0024035646
Quantity: 1 available
Seller: liu xing, Nanjing, JS, China
paperback. Condition: New. Paperback. Pub Date: 2019-07-01 Publisher: Machinery Industry Press Chapter 1 is a brief introduction of NLP. This chapter will first discuss why we need the NLP. Next. NLP will discuss some common sub-tasks. After that. the NLP discuss two major phases. namely the traditional stage and depth of the learning phase. By studying how to use the traditional language modeling algorithm to solve the task . Seller Inventory # NN024856
Quantity: 5 available