Gracias a varios logros innovadores, el deep learning ha dado un gran impulso a todo el campo del machine learning. Ahora, incluso programadores que no saben casi nada de esta tecnología pueden usar herramientas sencillas y eficaces para implementar programas capaces de aprender a partir de datos. Este best seller utiliza ejemplos concretos, una teoría mínima y frameworks de Python listos para la producción (Scikit Learn, Keras y TensorFlow) para ayudarte a obtener una comprensión intuitiva de los conceptos y herramientas para crear sistemas inteligentes.
Con esta tercera edición actualizada, el autor Aurélien Géron explora una variedad de técnicas que van desde una regresión lineal simple a redes neuronales profundas. Hay ejemplos de código y ejercicios por todo el libro para ayudarte a aplicar lo que has aprendido, lo único que necesitas para empezar es experiencia en programación:
* Utiliza Scikit-Learn para hacer un seguimiento de un proyecto de machine learning de ejemplo de principio a fin.
* Explora varios modelos, incluyendo máquinas de vectores soporte, árboles de decisión, random forests y métodos de ensamblaje.
* Aprovecha técnicas de aprendizaje no supervisado, como la reducción de dimensionalidad, el agrupamiento y la detección de anomalías.
* Sumérgete en arquitecturas de redes neuronales, incluyendo redes convolucionales, redes recurrentes, redes generativas antagónicas, autocodificadores, modelos de difusión y transformadores.
* Utiliza TensorFlow y Keras para crear y entrenar redes neuronales para visión por ordenador, procesamiento del lenguaje natural, modelos generativos y aprendizaje profundo por refuerzo.
"synopsis" may belong to another edition of this title.
Aurélien Géron es asesor de 'machine learning'. Antiguo 'googler', dirigió el equipo de clasificación de vídeos de YouTube desde 2013 a 2016. También fue fundador y CTO de Wifirst (proveedor de servicios de Internet inalámbrico líder en Francia) desde 2002 a 2012 y fundador y CTO de la empresa consultora de telecomunicaciones Polyconseil en 2001.
"About this title" may belong to another edition of this title.
US$ 11.04 shipping from Spain to U.S.A.
Destination, rates & speedsSeller: KALAMO BOOKS, Burriana, CS, Spain
Rustica. Condition: Nuevo. Seller Inventory # ANY9788441548046
Quantity: 1 available
Seller: Antártica, Madrid, M, Spain
Rustica (tapa blanda). Condition: New. Dust Jacket Condition: Nuevo. 01. Gracias a varios logros innovadores, el deep learning ha dado un gran impulso a todo el campo del machine learning. Ahora, incluso programadores que no saben casi nada de esta tecnología pueden usar herramientas sencillas y eficaces para implementar programas capaces de aprender a partir de datos. Este best seller utiliza ejemplos concretos, una teoría mínima y frameworks de Python listos para la producción (Scikit Learn, Keras y TensorFlow) para ayudarte a obtener una comprensión intuitiva de los conceptos y herramientas para crear sistemas inteligentes.Con esta tercera edición actualizada, el autor Aurélien Géron explora una variedad de técnicas que van desde una regresión lineal simple a redes neuronales profundas. Hay ejemplos de código y ejercicios por todo el libro para ayudarte a aplicar lo que has aprendido, lo único que necesitas para empezar es experiencia en programación:* Utiliza Scikit-Learn para hacer un seguimiento de un proyecto de machine learning de ejemplo de principio a fin.* Explora varios modelos, incluyendo máquinas de vectores soporte, árboles de decisión, random forests y métodos de. LIBRO. Seller Inventory # 1397150
Quantity: 1 available
Seller: Agapea Libros, Malaga, MA, Spain
Condition: New. Idioma/Language: Español. Gracias a varios logros innovadores, el deep learning ha dado un gran impulso a todo el campo del machine learning . Ahora, incluso programadores que no saben casi nada de esta tecnología pueden usar herramientas sencillas y eficaces para implementar programas capaces de aprender a partir de datos. Este best seller utiliza ejemplos concretos, una teoría mínima y frameworks de Python listos para la producción (Scikit Learn, Keras y TensorFlow) para ayudarte a obtener una comprensión intuitiva de los conceptos y herramientas para crear sistemas inteligentes. Con esta tercera edición actualizada, el autor Aurélien Géron explora una variedad de técnicas que van desde una regresión lineal simple a redes neuronales profundas. Hay ejemplos de código y ejercicios por todo el libro para ayudarte a aplicar lo que has aprendido, lo único que necesitas para empezar es experiencia en programación: * Utiliza Scikit-Learn para hacer un seguimiento de un proyecto de machine learning de ejemplo de principio a fin. * Explora varios modelos, incluyendo máquinas de vectores soporte, árboles de decisión, random forests y métodos de ensamblaje. * Aprovecha técnicas de aprendizaje no supervisado, como la reducción de dimensionalidad, el agrupamiento y la detección de anomalías. * Sumérgete en arquitecturas de redes neuronales, incluyendo redes convolucionales, redes recurrentes, redes generativas antagónicas, autocodificadores, modelos de difusión y transformadores. * Utiliza TensorFlow y Keras para crear y entrenar redes neuronales para visión por ordenador, procesamiento del lenguaje natural, modelos generativos y aprendizaje profundo por refuerzo. *** Nota: Los envíos a España peninsular, Baleares y Canarias se realizan a través de mensajería urgente. No aceptamos pedidos con destino a Ceuta y Melilla. Seller Inventory # 23697547
Quantity: 5 available
Seller: Vuestros Libros, Oviedo, O, Spain
Condition: Nuevo. Gracias a varios logros innovadores, el deep learning ha dado un gran impulso a todo el campo del machine learning. Ahora, incluso programadores que no saben casi nada de esta tecnología pueden usar herramientas sencillas y eficaces para implementar programas capaces de aprender a partir de datos. Este best seller utiliza ejemplos concretos, una teoría mínima y frameworks de Python listos para la producción (Scikit Learn, Keras y TensorFlow) para ayudarte a obtener una comprensión intuitiva de los conceptos y herramientas para crear sistemas inteligentes.Con esta tercera edición actualizada, el autor Aurélien Géron explora una variedad de técnicas que van desde una regresión lineal simple a redes neuronales profundas. Hay ejemplos de código y ejercicios por todo el libro para ayudarte a aplicar lo que has aprendido, lo único que necesitas para empezar es experiencia en programación:* Utiliza Scikit-Learn para hacer un seguimiento de un proyecto de machine learning de ejemplo de principio a fin.* Explora varios modelos, incluyendo máquinas de vectores soporte, árboles de decisión, random forests y métodos de ensamblaje.* Aprovecha técnicas de aprendizaje no supervisado, como la reducción de dimensionalidad, el agrupamiento y la detección de anomalías.* Sumérgete en arquitecturas de redes neuronales, incluyendo redes convolucionales, redes recurrentes, redes generativas antagónicas, autocodificadores, modelos de difusión y transformadores.* Utiliza TensorFlow y Keras para crear y entrenar redes neuronales para visión por ordenador, procesamiento del lenguaje natural, modelos generativos y aprendizaje profundo por refuerzo. Seller Inventory # 070139
Quantity: 5 available