Items related to Hands-on Deep Learning: A Guide to Deep Learning with...

Hands-on Deep Learning: A Guide to Deep Learning with Projects and Applications - Softcover

 
9798868810343: Hands-on Deep Learning: A Guide to Deep Learning with Projects and Applications

Synopsis

This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.

 

The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.

 

By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.

 

What You Will Learn

  • What are deep neural networks?
  • What is transfer learning, multi-task learning, and end-to-end learning?
  • What are hyperparameters, bias, variance, and data division?
  • What are CNN and RNN?

 

Who This Book Is For

Machine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning

"synopsis" may belong to another edition of this title.

About the Author

Harsh Bhasin is a researcher and practitioner. He has completed his PhD in Diagnosis and Conversion Prediction of Mild Cognitive Impairment Using Machine Learning from Jawaharlal Nehru University, New Delhi. He worked as a Deep Learning consultant for various firms and taught at various Universities, including Jamia Hamdard, and DTU. He is currently associated with Bennett University.

Harsh has authored 11 books, including Programming in C# and Algorithms. He has authored more than 40 papers that have been published in international conferences and renowned journals, including Alzheimer’s and Dementia, Soft Computing, Springer, BMC Medical Informatics & Decision Making, AI & Society, etc. He is the reviewer of a few renowned journals and has been the editor of a few special issues. He has been a recipient of Visvesvaraya Fellowship, Ministry of Electronics and Information Technology.

His areas of expertise include Deep Learning, Algorithms and Medical Imaging. Apart from his professional endeavours, he is deeply interested in Hindi Poetry: the progressive era and Hindustani Classical Music: percussion instruments.

From the Back Cover

This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.

 

The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.

 

By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.

 

What You Will Learn

  • What are deep neural networks?
  • What is transfer learning, multi-task learning, and end-to-end learning?
  • What are hyperparameters, bias, variance, and data division?
  • What are CNN and RNN?

 

"About this title" may belong to another edition of this title.

Buy Used

Condition: As New
Unread book in perfect condition...
View this item

US$ 2.64 shipping within U.S.A.

Destination, rates & speeds

Search results for Hands-on Deep Learning: A Guide to Deep Learning with...

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 48400515

Contact seller

Buy Used

US$ 50.90
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 48400515-n

Contact seller

Buy New

US$ 51.19
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Harsh Bhasin
ISBN 13: 9798868810343
New Paperback

Seller: Grand Eagle Retail, Mason, OH, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: new. Paperback. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9798868810343

Contact seller

Buy New

US$ 53.84
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9798868810343

Contact seller

Buy New

US$ 54.00
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Harsh Bhasin
ISBN 13: 9798868810343
New Paperback

Seller: Rarewaves USA, OSWEGO, IL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Seller Inventory # LU-9798868810343

Contact seller

Buy New

US$ 62.86
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
Used Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 48400515

Contact seller

Buy Used

US$ 60.67
Convert currency
Shipping: US$ 20.38
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
New Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 48400515-n

Contact seller

Buy New

US$ 67.68
Convert currency
Shipping: US$ 20.38
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Bhasin, Harsh
Published by Apress, 2024
ISBN 13: 9798868810343
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9798868810343_new

Contact seller

Buy New

US$ 85.67
Convert currency
Shipping: US$ 16.27
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Harsh Bhasin
Published by Apress, Apress Dez 2024, 2024
ISBN 13: 9798868810343
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.What You Will LearnWhat are deep neural networks What is transfer learning, multi-task learning, and end-to-end learning What are hyperparameters, bias, variance, and data division What are CNN and RNN Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning 384 pp. Englisch. Seller Inventory # 9798868810343

Contact seller

Buy New

US$ 77.44
Convert currency
Shipping: US$ 26.94
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Harsh Bhasin
ISBN 13: 9798868810343
New Paperback

Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Seller Inventory # LU-9798868810343

Contact seller

Buy New

US$ 67.69
Convert currency
Shipping: US$ 50.00
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

There are 5 more copies of this book

View all search results for this book