Synopsis:
The field of Digital Signal Processing has developed so fast in the last two decades that it can be found in the graduate and undergraduate programs of most universities. This development is related to the growing available techno logies for implementing digital signal processing algorithms. The tremendous growth of development in the digital signal processing area has turned some of its specialized areas into fields themselves. If accurate information of the signals to be processed is available, the designer can easily choose the most appropriate algorithm to process the signal. When dealing with signals whose statistical properties are unknown, fixed algorithms do not process these signals efficiently. The solution is to use an adaptive filter that automatically changes its characteristics by optimizing the internal parameters. The adaptive filtering algorithms are essential in many statistical signal processing applications. Although the field of adaptive signal processing has been subject of research for over three decades, it was in the eighties that a major growth occurred in research and applications. Two main reasons can be credited to this growth, the availability of implementation tools and the appearance of early textbooks exposing the subject in an organized form. Presently, there is still a lot of activities going on in the area of adaptive filtering. In spite of that, the theor etical development in the linear-adaptive-filtering area reached a maturity that justifies a text treating the various methods in a unified way, emphasizing the algorithms that work well in practical implementation.
From the Back Cover:
Adaptive Filtering: Algorithms and Practical Implementation, Third Edition, presents basic concepts of adaptive signal processing and filtering in a concise and straightforward manner. It concentrates on on-line algorithms whose adaptation occurs whenever a new sample of each environment signal is available. The material also illustrates block algorithms using a sub-band filtering framework whose adaptation occurs when a new block of data is available. Highlights of the new edition include: Expanded treatment of complex algorithms throughout the book New chapters on Data-Selective and Blind Adaptive Filtering An enlarged discussion of linear-constrained Wiener filters Detailed analysis of the affine projection algorithm Updated derivations and many new examples A primer on Kalman filtering in Appendix D as a complement to RLS algorithms. Algorithms are presented in a unified framework using a consistent notation that facilitates their actual implementation. The main algorithms are summarized and described in tables. Many examples address problems drawn from actual applications. The family of LMS and RLS algorithms as well as set-membership, sub-band, blind, nonlinear and IIR adaptive filtering, are covered. Problems are included at the end of chapters. Adaptive Filtering: Algorithms and Practical Implementation, Third Edition, is intended for advanced undergraduate and graduate students studying adaptive filtering and will also serve as an up-to-date and useful reference for professional engineers working in the field.
"About this title" may belong to another edition of this title.