Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more, 2nd Edition
Atienza, Rowel
Used - Hardcover
Quantity: 1 available
Add to basketQuantity: 1 available
Add to basketAbout this Item
Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M01800568274-V
Bibliographic Details
Title: Advanced Deep Learning with TensorFlow 2 and...
Publisher: Packt Publishing
Publication Date: 2020
Binding: Hardcover
Condition: very good
About this title
Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras
Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.
Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.
Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.
Next, you'll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.
"About this title" may belong to another edition of this title.
Store Description
1. Scope
For all orders via our store on the AbeBooks Marketplace, the following terms and conditions apply. Unless otherwise agreed, the inclusion of any terms and conditions of your own used by you is contradicted.
2. contracting party, conclusion of contract, correction options
The purchase contract is concluded with momox SE.
The subject of the contract is the sale of goods.
If an article is posted by us on AbeBooks, the activation of the offer page on AbeBooks is the binding offer to conclu...
More InformationPayment Methods
accepted by seller