Advanced Fluoropolymer Nanocomposites: Fabrication, Processing, Characterization and Applications presents a comprehensive review on the fundamental chemistry, physics, biology and engineering of advanced fluoropolymer nanocomposites. Detailed attention is given to the synthesis, processing characterization, properties and applications of fluoropolymer nanocomposites. Morphological, thermal, electrical, mechanical, tribological and viscoelastic properties are also discussed in detail, along with the influence of synthesis methods on the formation of fluoropolymer nanocomposites, including the effect of nanofiller size and shape and the dispersion state of various nanofillers in different fluoropolymer matrices.
This book will be a useful reference resource for scientists, engineers and postgraduate students working in the field of polymer science and technology, materials science and engineering, composites and nanocomposites. This resource will help them find solutions to both fundamental and applied problems associated with their research. It will also assist researchers in becoming more acquainted with the field to address key questions within a short time.
- Covers the range of fluoropolymer nanocomposites and their fabrication, processing, structural, physical, thermal, electrical and mechanical properties
- Discusses high-performance applications in the electronics, energy, architecture, environmental, biomedical and textile industries
- Presents the latest information on disposal and recycling, safety considerations, and the environmental and health impact of fluoropolymer nanocomposites
Dr Kalim Deshmukh is a senior researcher at the New Technologies-Research Centre, University of West Bohemia, Pilsen, Czech Republic. He has over 20 years of research experience working with a wide variety of nanomaterials and polymeric materials, especially polymer blends, nanocomposites, and nanohybrids for various applications. His research interest is mainly focused on the synthesis, characterization, and property investigations of novel polymer nanocomposites reinforced with different nanofillers, including various nanomaterials including carbon-based materials such as carbon black, carbon nanotubes, graphene and its derivatives and MXenes for energy storage, energy harvesting, gas sensing, EMI shielding and high-k dielectric applications.
Chaudhery Mustansar Hussain is an Adjunct Professor and Director of Laboratories in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), United States. His research focuses on nanotechnology and advanced materials applications, environmental management, analytical chemistry, and related industries. Dr. Hussain has authored numerous papers in peer-reviewed journals and is a prolific book author and editor, including scientific monographs and handbooks in his fields of expertise.