Due to popular demand this classic presentation of a vast amount on linear partial differential equations by a consummate master of the subject is now available as a study edition. The main change in this new edition is the inclusion of exercises with answers and hints. That is meant to emphasize that this volume can perfectly serve as a general course in modern analysis on a graduate student level and not only as a beginning of a specialised course in partial differential equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of general interest. As in the revised printing of volume II, a number of minor flaws have also been corrected in this edition. Parallely this edition is still available as volume 256 of the Grundlehren der mathematischen Wissenschaften. "... it is the best now available in print. ... All the theorems are there (among them the Schwartz kernel theorem), and all they have ... proofs." Bulletin of the American Mathematical Society "It certainly will be a classic for many years." Zentralblatt für Mathematik
Biography of Lars Hörmander
Born on January 24, 1931, on the southern coast of Sweden, Lars Hörmander did his secondary schooling as well as his undergraduate and doctoral studies in Lund. His principle teacher and adviser at the University of Lund was Marcel Riesz until he returned, then Lars Gårding. In 1956 he worked in the USA, at the universities of Chicago, Kansas, Minnesota and New York, before returning to a chair at the University of Stockholm. He remained a frequent visitor to the US, particularly to Stanford and was Professor at the IAS, Princeton from 1964 to 1968. In 1968 he accepted a chair at the University of Lund, Sweden, where, today, he is Emeritus Professor.
Hörmander¿s lifetime work has been devoted to the study of partial differential equations and its applications in complex analysis. In 1962 he was awarded the Fields Medal for his contributions to the general theory of linear partial differential operators. His book Linear Partial Differential Operators published 1963 by Springer in the Grundlehren series was the first major account of this theory. Hid four volume text The Analysis of Linear Partial Differential Operators published in the same series 20 years later illustrates the vast expansion of the subject in that period.