Automated Machine Learning: Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms
Masood, Adnan
Used - Soft cover
Condition: Used - Very good
Quantity: 1 available
Add to basketCondition: Used - Very good
Quantity: 1 available
Add to basketGut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages.
Seller Inventory # M01800567685-V
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies
Key Features:
Book Description:
Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.
This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle.
By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
What You Will Learn:
Who this book is for:
Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Adnan Masood, PhD is an artificial intelligence and machine learning researcher, visiting scholar at Stanford AI Lab, software engineer, Microsoft MVP (Most Valuable Professional), and Microsoft's regional director for artificial intelligence. As chief architect of AI and machine learning at UST Global, he collaborates with Stanford AI Lab and MIT CSAIL, and leads a team of data scientists and engineers building artificial intelligence solutions to produce business value and insights that affect a range of businesses, products, and initiatives.
"About this title" may belong to another edition of this title.
1. Scope
For all orders via our store on the AbeBooks Marketplace, the following terms and conditions apply. Unless otherwise agreed, the inclusion of any terms and conditions of your own used by you is contradicted.
2. contracting party, conclusion of contract, correction options
The purchase contract is concluded with momox SE.
The subject of the contract is the sale of goods.
If an article is posted by us on AbeBooks, the activation of the offer page on AbeBooks is the binding offer to conclu...
More Information