Automating Data-Driven Modelling of Dynamical Systems
Dhruv Khandelwal
Sold by BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
AbeBooks Seller since January 11, 2012
New - Hardcover
Condition: New
Quantity: 2 available
Add to basketSold by BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
AbeBooks Seller since January 11, 2012
Condition: New
Quantity: 2 available
Add to basketThis item is printed on demand - it takes 3-4 days longer - Neuware -This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification. 256 pp. Englisch.
Seller Inventory # 9783030903428
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
"About this title" may belong to another edition of this title.
Allgemeine Geschäftsbedingungen mit Kundeninformationen
Inhaltsverzeichnis
Geltungsbereich
Vertragsschluss
Widerrufsrecht
Preise und Zahlungsbedingungen
Liefer- und Versandbedingungen
Eigentumsvorbehalt
Mängelhaftung
Anwendbares Recht
Gerichtsstand
Alternative Streitbeilegung
Der Versand ins Ausland findet IMMER mit DHL statt. Auch nach Österreich verschicken wir nur mit DHL! Daher Standardversand == Luftpost!