Automating Data Quality Monitoring at Scale
Jeremy Stanley, Paige Schwartz
Sold by Rarewaves USA, OSWEGO, IL, U.S.A.
AbeBooks Seller since June 10, 2025
New - Soft cover
Condition: New
Ships within U.S.A.
Quantity: Over 20 available
Add to basketSold by Rarewaves USA, OSWEGO, IL, U.S.A.
AbeBooks Seller since June 10, 2025
Condition: New
Quantity: Over 20 available
Add to basketThe world's businesses ingest a combined 2.5 quintillion bytes of data every day. But how much of this vast amount of data--used to build products, power AI systems, and drive business decisions--is poor quality or just plain bad? This practical book shows you how to ensure that the data your organization relies on contains only high-quality records.Most data engineers, data analysts, and data scientists genuinely care about data quality, but they often don't have the time, resources, or understanding to create a data quality monitoring solution that succeeds at scale. In this book, Jeremy Stanley and Paige Schwartz from Anomalo explain how you can use automated data quality monitoring to cover all your tables efficiently, proactively alert on every category of issue, and resolve problems immediately.This book will help you:Learn why data quality is a business imperativeUnderstand and assess unsupervised learning models for detecting data issuesImplement notifications that reduce alert fatigue and let you triage and resolve issues quicklyIntegrate automated data quality monitoring with data catalogs, orchestration layers, and BI and ML systemsUnderstand the limits of automated data quality monitoring and how to overcome themLearn how to deploy and manage your monitoring solution at scaleMaintain automated data quality monitoring for the long term.
Seller Inventory # LU-9781098145934
The world's businesses ingest a combined 2.5 quintillion bytes of data every day. But how much of this vast amount of data--used to build products, power AI systems, and drive business decisions--is poor quality or just plain bad? This practical book shows you how to ensure that the data your organization relies on contains only high-quality records.
Most data engineers, data analysts, and data scientists genuinely care about data quality, but they often don't have the time, resources, or understanding to create a data quality monitoring solution that succeeds at scale. In this book, Jeremy Stanley and Paige Schwartz from Anomalo explain how you can use automated data quality monitoring to cover all your tables efficiently, proactively alert on every category of issue, and resolve problems immediately.
This book will help you:
"About this title" may belong to another edition of this title.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
| Order quantity | 9 to 12 business days | 9 to 12 business days |
|---|---|---|
| First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.