Chebyshev Splines and Kolmogorov Inequalities (Paperback)
Sergey Bagdasarov
Sold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since October 12, 2005
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since October 12, 2005
Condition: New
Quantity: 1 available
Add to basketPaperback. Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri- odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex- tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana- log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor- ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW . Since the introduction of the functional classes HW (lI) and WT HW (lI) and their periA odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of exA tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic anaA log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighborA ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller Inventory # 9783034897815
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Order quantity | 6 to 16 business days | 6 to 14 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.