Data Analytics for Smart Infrastructure: Asset Management and Network Performance
Yang Wang
Sold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since June 14, 2006
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since June 14, 2006
Condition: New
Quantity: 1 available
Add to basketNew copy - Usually dispatched within 4 working days.
Seller Inventory # B9781032754161
This book presents, for the first time, data analytics for smart infrastructures. The authors draw on over a decade’s experience working with industry and demonstrating the capabilities of data analytics for infrastructure and asset management.
The volume gives data-driven solutions to cover critical capabilities for infrastructure and asset management across three domains: 1) situation awareness 2) predictive analytics and 3) decision support. The reader will gain from various data analytic techniques including anomaly detection, performance evaluation, failure prediction, trend analysis, asset prioritization, smart sensing and real-time/online systems. These data analytic techniques are vital to solving problems in infrastructure and asset management. The reader will benefit from case studies drawn from critical infrastructures such as water management, structural health monitoring and rail networks.
This groundbreaking work will be essential reading for those studying and practicing analytics in the context of smart infrastructure.
Yang Wang is a professor at UTS Data Science Institute, leading advanced data analytics for smart infrastructure. Yang keeps actively engaged with industry partners and delivers innovative data-driven solutions for critical infrastructures including supply water and transport network, structural health monitoring, etc. Yang has received various research and innovation awards including Eureka Prize, iAwards, and AWA water awards.
Associate Professor Zhidong Li at UTS is an award-winning expert in data science and machine learning, with a notable tenure at Data61, CSIRO, and a history of significant contributions to translate machine learning into industrial fields, including infrastructure, finance, environment, and agriculture.
Ting Guo is a senior research fellow in the Data Science Institute at UTS. He has years of experience in collaborative research with industry partners in infrastructure failure prediction and proactive maintenance. His research interests include deep learning, graph learning and data mining.
Bin Liang, a senior lecturer at UTS, is an accomplished data scientist with extensive industry and research experience. With publications in top venues and successful industry project deliverables, his expertise in data analytics, AI, and computer vision has driven significant academic, social, and economic advancements.
Hongda Tian is a research and innovation focused Senior Lecturer at the UTS Data Science Institute. By leveraging the power of artificial intelligence, he has been focusing on research translation through working with government and industry partners and providing data-driven solutions to real-world problems.
Professor Fang Chen is the Executive Director at the UTS Data Science Institute. She is an award-winning, internationally recognised leader in AI and data science, having won the Australian Museum Eureka Prize 2018 for Excellence in Data Science, NSW Premier's Prize of Science and Engineering, and the Australia and New Zealand "Women in AI" Award in Infrastructure in 2021. Her extensive expertise is centered around developing data-driven innovations that address complex challenges across large-scale networks in different industry sectors.
"About this title" may belong to another edition of this title.
Please order through the Abebooks checkout. We only take orders through Abebooks - We don't take direct orders by email or phone.
Refunds or Returns: A full refund of the purchase price will be given if returned within 30 days in undamaged condition.
As a seller on abebooks we adhere to the terms explained at http://www.abebooks.co.uk/docs/HelpCentral/buyerIndex.shtml - if you require further assistance please email us at orders@thesaintbookstore.co.uk
Most orders usually ship within 1-3 business days, but some can take up to 7 days.
| Order quantity | 7 to 28 business days | 7 to 28 business days |
|---|---|---|
| First item | US$ 20.96 | US$ 23.57 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.