Synopsis
                  Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure.
Summary
 In Data Engineering on Azure you will learn how to:
 
     Pick the right Azure services for different data scenarios
     Manage data inventory
     Implement production quality data modeling, analytics, and machine learning workloads
     Handle data governance
     Using DevOps to increase reliability
     Ingesting, storing, and distributing data
     Apply best practices for compliance and access control
 
 Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning.
 
 Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
 
 About the technology
 Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify.
 
 About the book
 In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms.
 
 What's inside
 
     Data inventory and data governance
     Assure data quality, compliance, and distribution
     Build automated pipelines to increase reliability
     Ingest, store, and distribute data
     Production-quality data modeling, analytics, and machine learning
 
 About the reader
 For data engineers familiar with cloud computing and DevOps.
 
 About the author
 Vlad Riscutia is a software architect at Microsoft.
 
 Table of Contents
 
 1 Introduction
 PART 1 INFRASTRUCTURE
 2 Storage
 3 DevOps
 4 Orchestration
 PART 2 WORKLOADS
 5 Processing
 6 Analytics
 7 Machine learning
 PART 3 GOVERNANCE
 8 Metadata
 9 Data quality
 10 Compliance
 11 Distributing data
                                                  
                                            About the Author
                                      
                  Vlad Riscutia is a software architect at Microsoft.
                                "About this title" may belong to another edition of this title.