Data Science and Machine Learning (Paperback)
Dr B.K. Sharma
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
Condition: New
Quantity: 1 available
Add to basketPaperback. "Data Science and Machine Learning: Mathematical and Statistical Methods" is a comprehensive guide that emphasizes the theoretical foundations of data science and machine learning. The book is ideal for students, researchers, and professionals who aim to build a strong mathematical understanding of core concepts in these rapidly growing fields. It bridges the gap between theory and practice by combining mathematical rigor with practical applications.The text delves deeply into essential topics such as probability theory, linear algebra, calculus, and statistical inference - all of which form the backbone of data science. These concepts are not just introduced but are thoroughly explored with clear explanations, proofs, and illustrative examples. A significant portion of the book is dedicated to regression analysis, classification methods, clustering techniques, and dimensionality reduction, which are fundamental tools in machine learning.One of the key strengths of the book is its focus on the mathematical intuition behind machine learning algorithms. Readers are guided through the derivation of algorithms like linear regression, logistic regression, support vector machines, principal component analysis, and k-means clustering. It also introduces more advanced topics such as Bayesian methods, kernel methods, and elements of deep learning from a mathematical viewpoint. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9798899062148
"Data Science and Machine Learning: Mathematical and Statistical Methods" is a comprehensive guide that emphasizes the theoretical foundations of data science and machine learning. The book is ideal for students, researchers, and professionals who aim to build a strong mathematical understanding of core concepts in these rapidly growing fields. It bridges the gap between theory and practice by combining mathematical rigor with practical applications.
The text delves deeply into essential topics such as probability theory, linear algebra, calculus, and statistical inference — all of which form the backbone of data science. These concepts are not just introduced but are thoroughly explored with clear explanations, proofs, and illustrative examples. A significant portion of the book is dedicated to regression analysis, classification methods, clustering techniques, and dimensionality reduction, which are fundamental tools in machine learning.
One of the key strengths of the book is its focus on the mathematical intuition behind machine learning algorithms. Readers are guided through the derivation of algorithms like linear regression, logistic regression, support vector machines, principal component analysis, and k-means clustering. It also introduces more advanced topics such as Bayesian methods, kernel methods, and elements of deep learning from a mathematical viewpoint.
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
Order quantity | 7 to 60 business days | 7 to 14 business days |
---|---|---|
First item | US$ 49.82 | US$ 49.82 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.