Deep Learning for Smart Healthcare (Paperback)
K. Murugeswari
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
New - Soft cover
Condition: New
Ships from United Kingdom to U.S.A.
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
Condition: New
Quantity: 1 available
Add to basketPaperback. Deep learning can provide more accurate results compared to machine learning. It uses layered algorithmic architecture to analyze data. It produces more accurate results since learning from previous results enhances its ability. The multi-layered nature of deep learning systems has the potential to classify subtle abnormalities in medical images, clustering patients with similar characteristics into risk-based cohorts, or highlighting relationships between symptoms and outcomes within vast quantities of unstructured data.Exploring this potential, Deep Learning for Smart Healthcare: Trends, Challenges and Applications is a reference work for researchers and academicians who are seeking new ways to apply deep learning algorithms in healthcare, including medical imaging and healthcare data analytics. It covers how deep learning can analyze a patients medical history efficiently to aid in recommending drugs and dosages. It discusses how deep learning can be applied to CT scans, MRI scans and ECGs to diagnose diseases. Other deep learning applications explored are extending the scope of patient record management, pain assessment, new drug design and managing the clinical trial process.Bringing together a wide range of research domains, this book can help to develop breakthrough applications for improving healthcare management and patient outcomes. The book is a baseline reference for researchers and academicians who are investigating the application of deep learning algorithms in the healthcare sector. It focuses on medical imaging and healthcare data analytics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9781032745169
Deep learning can provide more accurate results compared to machine learning. It uses layered algorithmic architecture to analyze data. It produces more accurate results since learning from previous results enhances its ability. The multi-layered nature of deep learning systems has the potential to classify subtle abnormalities in medical images, clustering patients with similar characteristics into risk-based cohorts, or highlighting relationships between symptoms and outcomes within vast quantities of unstructured data.
Exploring this potential, Deep Learning for Smart Healthcare: Trends, Challenges and Applications is a reference work for researchers and academicians who are seeking new ways to apply deep learning algorithms in healthcare, including medical imaging and healthcare data analytics. It covers how deep learning can analyze a patient’s medical history efficiently to aid in recommending drugs and dosages. It discusses how deep learning can be applied to CT scans, MRI scans and ECGs to diagnose diseases. Other deep learning applications explored are extending the scope of patient record management, pain assessment, new drug design and managing the clinical trial process.
Bringing together a wide range of research domains, this book can help to develop breakthrough applications for improving healthcare management and patient outcomes.
Dr. K. Murugeswari is a Senior Assistant Professor in the School of Computing Science and Engineering at VIT Bhopal University, M.P, India.
Dr. B. Sundaravadivazhagan is a professor in the Department of Information Technology at the University of Technology and Applied Science-AL Mussanah in Oman.
Dr. S. Poonkuntran is a Professor and Dean in the School of Computing Science and Engineering at VIT Bhopal Uniersity, M.P, India.
Dr. Thendral Puyalnithi is an Assistant Professor Senior in the Mepco Schlenk Engineering College in the Department of Artificial Intelligence and Data Science, Tamil Nadu, India.
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
| Order quantity | 7 to 60 business days | 7 to 14 business days |
|---|---|---|
| First item | US$ 49.65 | US$ 49.65 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.