Distributed Machine Learning and Gradient Optimization
Jiang, Jiawei|Cui, Bin|Zhang, Ce
New - Soft cover
Quantity: Over 20 available
Add to basketQuantity: Over 20 available
Add to basketAbout this Item
Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp. Seller Inventory # 807960357
Bibliographic Details
Title: Distributed Machine Learning and Gradient ...
Publisher: Springer, Berlin|Springer Nature Singapore|Springer
Publication Date: 2023
Binding: Soft cover
Condition: New
About this title
This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.
Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Jiawei Jiang obtained his PhD from Peking University 2018, advised by Prof. Bin Cui. His research interests include distributed machine learning, gradient optimization and automatic machine learning. He has served as a program committee member or reviewer for various international events, including SIGMOD, VLDB, ICDE, KDD, AAAI and TKDE. He was awarded the CCF Outstanding Doctoral Dissertation Award (2019) and ACM China Doctoral Dissertation Award (2018).
Bin Cui is a Professor at the School of EECS and Director of the Institute of Network Computing and Information Systems, at Peking University. His research interests include database system architectures, query and index techniques, and big data management and mining. He has published over 200 refereed papers at international conferences and in journals. Dr. Cui has served on the technical program committee of various international conferences, including SIGMOD, VLDB, ICDE and KDD, and as Vice PC Chair of ICDE 2011, Demo Co-Chair of ICDE 2014, Area Chair of VLDB 2014, PC Co-Chair of APWeb 2015 and WAIM 2016. He is currently a member of the trustee board of VLDB Endowment, is on the editorial board of the VLDB Journal, Distributed and Parallel Databases Journal, and Information Systems, and was formerly an associate editor of IEEE Transactions on Knowledge and Data Engineering (TKDE, 2009-2013). He was selected for a Microsoft Young Professorship award (MSRA 2008), CCF Young Scientist award (2009), Second Prize of Natural Science Award of MOE China (2014), and appointed a Cheung Kong distinguished Professor by the MOE in 2016.
"About this title" may belong to another edition of this title.
Store Description
Instructions for revocation/
Standard Business Terms and customer information/ data protection declaration
Revocation right for consumers
(A ?consumer? is any natural person who concludes a legal transaction which, to an overwhelming extent, cannot be attributed to either his commercial or independent professional activities.)
Instructions for revocation
Revocation right
You have the right to revoke this contract within one month without specifying any reasons.
The revocation period is one month...
II. Kundeninformationen
Moluna GmbH
Engberdingdamm 27
48268 Greven
Deutschland
Telefon: 02571/5698933
E-Mail: abe@moluna.de
Alternative Streitbeilegung:
Die Europäische Kommission stellt eine Plattform für die außergerichtliche Online-Streitbeilegung (OS-Plattform) bereit, aufrufbar unter https://ec.europa.eu/odr.
Die technischen Schritte zum Vertragsschluss, der Vertragsschluss selbst und die Korrekturmöglichkeiten erfolgen nach Maßgabe der Regelungen "Zustandekommen des Vertrages" unserer Allgemeinen Geschäftsbedingungen (Teil I.).
3.1. Vertragssprache ist deutsch .
3.2. Der vollständige Vertragstext wird von uns nicht gespeichert. Vor Absenden der Bestellung können die Vertragsdaten über die Druckfunktion des Browsers ausgedruckt oder elektronisch gesichert werden. Nach Zugang der Bestellung bei uns werden die Bestelldaten, die gesetzlich vorgeschriebenen Informationen bei Fernabsatzverträgen und die Allgemeinen Geschäftsbedingungen nochmals per E-Mail an Sie übersandt.
Die wesentlichen Merkmale der Ware und/oder Dienstleistung finden sich im jeweiligen Angebot.
5.1. Die in den jeweiligen Angeboten angeführten Preise sowie die Versandkosten stellen Gesamtpreise dar. Sie beinhalten alle Preisbestandteile einschließlich aller anfallenden Steuern.
5.2. Die anfallenden Versandkosten sind nicht im Kaufpreis enthalten. Sie sind über eine entsprechend bezeichnete Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot aufrufbar, werden im Laufe des Bestellvorganges gesondert ausgewiesen und sind von Ihnen zusätzlich zu tragen, soweit nicht die versandkostenfreie Lieferung zugesagt ist.
5.3. Die Ihnen zur Verfügung stehenden Zahlungsarten sind unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot ausgewiesen.
5.4. Soweit bei den einzelnen Zahlungsarten nicht anders angegeben, sind die Zahlungsansprüche aus dem geschlossenen Vertrag sofort zur Zahlung fällig.
6.1. Die Lieferbedingungen, der Liefertermin sowie gegebenenfalls bestehende Lieferbeschränkungen finden sich unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot.
Soweit im jeweiligen Angebot oder unter der entsprechend bezeichneten Schaltfläche keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Tagen nach Vertragsschluss (bei vereinbarter Vorauszahlung jedoch erst nach dem Zeitpunkt Ihrer Zahlungsanweisung).
6.2. Soweit Sie Verbraucher sind ist gesetzlich geregelt, dass die Gefahr des zufälligen Untergangs und der zufälligen Verschlechterung der verkauften Sache während der Versendung erst mit der Übergabe der Ware an Sie übergeht, unabhängig davon, ob die Versendung versichert oder unversichert erfolgt. Dies gilt nicht, wenn Sie eigenständig ein nicht vom Unternehmer benanntes Transportunternehmen oder eine sonst zur Ausführung der Versendung bestimmte Person beauftragt haben.
Sind Sie Unternehmer, erfolgt die Lieferung und Versendung auf Ihre Gefahr.
Die Mängelhaftung richtet sich nach der Regelung "Gewährleistung" in unseren Allgemeinen Geschäftsbedingungen (Teil I).
letzte Aktualisierung: 23.10.2019
Payment Methods
accepted by seller