Distributed Machine Learning with Python
Wang, Guanhua
New - Soft cover
Quantity: Over 20 available
Add to basketQuantity: Over 20 available
Add to basketAbout this Item
Über den AutorrnrnGuanhua Wang is a final-year Computer Science PhD student in the RISELab at UC Berkeley, advised by Professor Ion Stoica. His research lies primarily in the Machine Learning Systems area including fast collective communica. Seller Inventory # 615096508
Bibliographic Details
Title: Distributed Machine Learning with Python
Publisher: Packt Publishing
Publication Date: 2022
Binding: Soft cover
Condition: New
About this title
Build and deploy an efficient data processing pipeline for machine learning model training in an elastic, in-parallel model training or multi-tenant cluster and cloud
Reducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the end of this book, you'll have gained the knowledge and skills needed to build and deploy an efficient data processing pipeline for machine learning model training and inference in a distributed manner.
This book is for data scientists, machine learning engineers, and ML practitioners in both academia and industry. A fundamental understanding of machine learning concepts and working knowledge of Python programming is assumed. Prior experience implementing ML/DL models with TensorFlow or PyTorch will be beneficial. You'll find this book useful if you are interested in using distributed systems to boost machine learning model training and serving speed.
Guanhua Wang is a final-year Computer Science PhD student in the RISELab at UC Berkeley, advised by Professor Ion Stoica. His research lies primarily in the Machine Learning Systems area including fast collective communication, efficient in-parallel model training and real-time model serving. His research gained lots of attention from both academia and industry. He was invited to give talks to top-tier universities (MIT, Stanford, CMU, Princeton) and big tech companies (Facebook/Meta, Microsoft). He received his master’s degree from HKUST and bachelor’s degree from Southeast University in China. He also did some cool research on wireless networks. He likes playing soccer and runs half-marathon multiple times in the Bay Area of California.
"About this title" may belong to another edition of this title.
Store Description
Instructions for revocation/
Standard Business Terms and customer information/ data protection declaration
Revocation right for consumers
(A ?consumer? is any natural person who concludes a legal transaction which, to an overwhelming extent, cannot be attributed to either his commercial or independent professional activities.)
Instructions for revocation
Revocation right
You have the right to revoke this contract within one month without specifying any reasons.
The revocation period is one month...
II. Kundeninformationen
Moluna GmbH
Engberdingdamm 27
48268 Greven
Deutschland
Telefon: 02571/5698933
E-Mail: abe@moluna.de
Alternative Streitbeilegung:
Die Europäische Kommission stellt eine Plattform für die außergerichtliche Online-Streitbeilegung (OS-Plattform) bereit, aufrufbar unter https://ec.europa.eu/odr.
Die technischen Schritte zum Vertragsschluss, der Vertragsschluss selbst und die Korrekturmöglichkeiten erfolgen nach Maßgabe der Regelungen "Zustandekommen des Vertrages" unserer Allgemeinen Geschäftsbedingungen (Teil I.).
3.1. Vertragssprache ist deutsch .
3.2. Der vollständige Vertragstext wird von uns nicht gespeichert. Vor Absenden der Bestellung können die Vertragsdaten über die Druckfunktion des Browsers ausgedruckt oder elektronisch gesichert werden. Nach Zugang der Bestellung bei uns werden die Bestelldaten, die gesetzlich vorgeschriebenen Informationen bei Fernabsatzverträgen und die Allgemeinen Geschäftsbedingungen nochmals per E-Mail an Sie übersandt.
Die wesentlichen Merkmale der Ware und/oder Dienstleistung finden sich im jeweiligen Angebot.
5.1. Die in den jeweiligen Angeboten angeführten Preise sowie die Versandkosten stellen Gesamtpreise dar. Sie beinhalten alle Preisbestandteile einschließlich aller anfallenden Steuern.
5.2. Die anfallenden Versandkosten sind nicht im Kaufpreis enthalten. Sie sind über eine entsprechend bezeichnete Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot aufrufbar, werden im Laufe des Bestellvorganges gesondert ausgewiesen und sind von Ihnen zusätzlich zu tragen, soweit nicht die versandkostenfreie Lieferung zugesagt ist.
5.3. Die Ihnen zur Verfügung stehenden Zahlungsarten sind unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot ausgewiesen.
5.4. Soweit bei den einzelnen Zahlungsarten nicht anders angegeben, sind die Zahlungsansprüche aus dem geschlossenen Vertrag sofort zur Zahlung fällig.
6.1. Die Lieferbedingungen, der Liefertermin sowie gegebenenfalls bestehende Lieferbeschränkungen finden sich unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot.
Soweit im jeweiligen Angebot oder unter der entsprechend bezeichneten Schaltfläche keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Tagen nach Vertragsschluss (bei vereinbarter Vorauszahlung jedoch erst nach dem Zeitpunkt Ihrer Zahlungsanweisung).
6.2. Soweit Sie Verbraucher sind ist gesetzlich geregelt, dass die Gefahr des zufälligen Untergangs und der zufälligen Verschlechterung der verkauften Sache während der Versendung erst mit der Übergabe der Ware an Sie übergeht, unabhängig davon, ob die Versendung versichert oder unversichert erfolgt. Dies gilt nicht, wenn Sie eigenständig ein nicht vom Unternehmer benanntes Transportunternehmen oder eine sonst zur Ausführung der Versendung bestimmte Person beauftragt haben.
Sind Sie Unternehmer, erfolgt die Lieferung und Versendung auf Ihre Gefahr.
Die Mängelhaftung richtet sich nach der Regelung "Gewährleistung" in unseren Allgemeinen Geschäftsbedingungen (Teil I).
letzte Aktualisierung: 23.10.2019
Payment Methods
accepted by seller